【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建一個(gè)矩形游泳池及其矩形附屬設(shè)施,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為,半徑為,矩形的一邊在直徑上,點(diǎn)在圓周上, 在邊上,且,設(shè).

(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;

2)當(dāng)為何值時(shí),能符合園林局的要求?

【答案】(1);(2)

【解析】試題分析:1)由已知分別用θ表示兩個(gè)矩形的長和寬, 可得fθ的表達(dá)式;(2)要符合園林局的要求,只要f(θ)最小,求導(dǎo),利用導(dǎo)數(shù)法分析當(dāng)時(shí), , 是單調(diào)減函數(shù),當(dāng)時(shí), , 是單調(diào)增函數(shù),所以當(dāng)時(shí), 取得最小值即可得答案.

試題解析:

(1)由題意, ,且為等邊三角形,

所以, ,

,

(2)要符合園林局的要求,只要最小,

由(1知,

,即,解得(舍去),

當(dāng)時(shí), , 是單調(diào)減函數(shù),當(dāng)時(shí), , 是單調(diào)增函數(shù),所以當(dāng)時(shí), 取得最小值.

答:當(dāng)滿足時(shí),符合園林局要求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列各項(xiàng)均為正數(shù), , ,且對(duì)任意恒成立,記的前項(xiàng)和為.

(1)若,求的值;

(2)證明:對(duì)任意正實(shí)數(shù), 成等比數(shù)列;

(3)是否存在正實(shí)數(shù),使得數(shù)列為等比數(shù)列.若存在,求出此時(shí)的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)f(x)是單調(diào)區(qū)間;

(2)如果關(guān)于x的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值集合;

(3)是否存在正數(shù)k,使得關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根?如果存在,求k滿足的條件;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面, , , , , .

(1)求證: 平面

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)當(dāng)處的切線與直線垂直時(shí),方程有兩相異實(shí)數(shù)根,求的取值范圍;

(2)若冪函數(shù)的圖象關(guān)于軸對(duì)稱,求使不等式上恒成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=

1)若,函數(shù)的圖像與函數(shù)的圖像相切,求的值;

2)若, ,函數(shù)滿足對(duì)任意x1x2),都有恒成立,求的取值范圍;

3)若,函數(shù)=f(x)+ g(x),G()有兩個(gè)極值點(diǎn)x1,x2,其中x1,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中, ,前項(xiàng)和滿足).

⑴ 求數(shù)列的通項(xiàng)公式;

,求數(shù)列的前項(xiàng)和;

⑶ 是否存在整數(shù)對(duì)(其中, )滿足?若存在,求出所有的滿足題意的整數(shù)對(duì);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱臺(tái)中, 側(cè)面與側(cè)面是全等的梯形,若,且.

(Ⅰ)若, ,證明: ∥平面;

(Ⅱ)若二面角,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知為橢圓 的右焦點(diǎn), , , 為橢圓的下、上、右三個(gè)頂點(diǎn), 的面積之比為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)試探究在橢圓上是否存在不同于點(diǎn) 的一點(diǎn)滿足下列條件:點(diǎn)軸上的投影為, 的中點(diǎn)為,直線交直線于點(diǎn) 的中點(diǎn)為,且的面積為.若不存在,請(qǐng)說明理由;若存在,求出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案