【題目】已知函數(shù), .

(1)當(dāng)處的切線與直線垂直時,方程有兩相異實數(shù)根,求的取值范圍;

(2)若冪函數(shù)的圖象關(guān)于軸對稱,求使不等式上恒成立的的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1)方程有兩相異實數(shù)根等價于有兩個零點(diǎn);(2),不等式上恒成立,即求的最小值,

,對a分類討論研究函數(shù)的單調(diào)性,從而確定出函數(shù)的最值.

試題解析:

(Ⅰ)由題設(shè)可得,令,

,

0

遞減

極小值

遞增

有兩個不等實根 .

(Ⅱ)由題設(shè)有,令

,令 ,

, , 在單調(diào)遞增,

當(dāng),即時, ,

所以內(nèi)單調(diào)遞增, ,所以

②當(dāng),即時,由內(nèi)單調(diào)遞增,

,

使得

0

遞減

極小值

遞增

所以的最小值為,

,所以 ,

因此,要使當(dāng)時, 恒成立,只需,即即可.

解得,此時由,可得

以下求出a的取值范圍.

設(shè), ,

所以上單調(diào)遞減,從而,

綜上①②所述, 的取值范圍

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè)當(dāng),不等式恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD與等邊PAD所在的平面相互垂直,AD=2,∠DAB=60°.

(1)證明:ADPB;

求三棱錐CPAB的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為自然對數(shù)的底數(shù)),且曲線在點(diǎn)處的切線平行于軸.

(1)求的值;

(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的一條對稱軸為,且最高點(diǎn)的縱坐標(biāo)是

(1)求的最小值及此時函數(shù)的最小正周期、初相;

(2)在(1)的情況下,設(shè),求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊半圓形空地,開發(fā)商計劃建一個矩形游泳池及其矩形附屬設(shè)施,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為,半徑為,矩形的一邊在直徑上,點(diǎn)在圓周上, 在邊上,且,設(shè).

(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;

2)當(dāng)為何值時,能符合園林局的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南京市江北新區(qū)計劃在一個豎直長度為20米的瀑布正前方修建一座觀光電梯。如圖所示,瀑布底部距離水平地面的高度60米,電梯上設(shè)有一個安全拍照口, 上升的最大高度為60米。設(shè)距離水平地面的高度為米, 處拍照瀑布的視角。攝影愛好者發(fā)現(xiàn),要使照片清晰,視角不能小于

1)當(dāng)米時,視角恰好為,求電梯和山腳的水平距離。

2)要使電梯拍照口的高度52米及以上時,拍出的照片均清晰,請求出電梯和山腳的水平距離的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團(tuán)組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩項:①到各班做宣傳,倡議同學(xué)們積極捐獻(xiàn)冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實際情況,只參與其中的某一項工作.相關(guān)統(tǒng)計數(shù)據(jù)如下表所示:

(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?

(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實常數(shù)).

)若的極值點(diǎn),求實數(shù)的取值范圍.

)討論函數(shù)上的單調(diào)性.

)若存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案