16.已知命題p,q,“命題p∨q真”是“命題p∧q真”的( 。l件.
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)復(fù)合命題真假關(guān)系以及充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:當(dāng)p真q假時,滿足命題p∨q真,但命題p∧q為假,即充分性不成立,
若命題p∧q真,則命題p,q都為真,則命題p∨q真,即必要性成立,
故,“命題p∨q真”是“命題p∧q真”的必要不充分條件,
故選:B

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,根據(jù)復(fù)合命題真假關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)的定義在(-3,3)上的奇函數(shù),當(dāng)0<x<3時,f(x)的圖象如圖所示,則不等式f(x)•x≥0的解集是(-3,-1]∪[1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=\sqrt{3}t\\ y=4+t\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4sinθ,則直線l被圓C截得的弦長為(  )
A.2B.4C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.不等式(a-1)x2+2(a-1)x-2<0,對于x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知兩點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱該直線為“B型直線”.給出下列直線:①y=x+1;②y=2x+1;③$y=\frac{4}{3}x$;④y=2,其中為“B型直線”的是(  )
A.①②B.①③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓C的方程為:x2+y2+2x-4y+k=0,(k∈R).
(1)求圓心C的坐標(biāo);
(2)求實(shí)數(shù)k的取值范圍;
(3)是否存在實(shí)數(shù)k,使直線l:x-2y+4=0與圓C相交于M、N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn))若存在,求出k的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知偶函數(shù)f(x)在(-∞,0]上滿足:當(dāng)x1,x2∈(-∞,0]且x1≠x2時,總有$\frac{{{x_1}-{x_2}}}{{f({x_1})-f({x_2})}}<0$,則不等式f(x-1)≥f(x)的解集為$\{x∈R|x≤\frac{1}{2}\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.代數(shù)式sin75°cos75°的值為( 。
A.$\frac{1}{4}$B.$-\frac{1}{4}$C.$\frac{{\sqrt{3}}}{4}$D.$-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a∈R,若f(x)=(x+$\frac{a}{x}$-1)ex在區(qū)間(1,3)上有極值點(diǎn),則a的取值范圍是(-∞,-$\frac{27}{4}$).

查看答案和解析>>

同步練習(xí)冊答案