設(shè)F1、F2是橢圓
x2
3
+
y2
4
=1的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),且|PF1|-|PF2|=1,則cos∠F1PF2=
 
考點(diǎn):橢圓的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由P在橢圓上,可得|PF1|+|PF2|=4,與已知條件聯(lián)立可求得|PF1|與|PF2|,再利用余弦定理即可求得答案.
解答: 解:橢圓的兩焦點(diǎn)是F1(0,-1),F(xiàn)2(0,1),
∵|PF1|-|PF2|=1,|PF1|+|PF2|=4,
∴|PF1|=2.5,|PF2|=1.5.
△F1PF2中,由余弦定理可得|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|cos∠F1PF2,
即4=6.25+2.25-2×2.25×1.5cos∠F1PF2,
∴cos∠F1PF2=0.6,
故答案為:0.6.
點(diǎn)評(píng):本題主要考查橢圓的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)、余弦定理的應(yīng)用,求出|PF1|=2.5,|PF2|=1.5,是解題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程2x+
8
x
-a=0有正數(shù)根,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=(sinx+cosx)2+2cos2x的最小正周期=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某縣區(qū)有A,B,C三所高中,共有高一學(xué)生4000人,且A,B,C三所學(xué)校的高一學(xué)生人數(shù)之比為3:2:5.現(xiàn)要從該區(qū)高一學(xué)生中隨機(jī)抽取一個(gè)容量為200的樣本,則A校被抽到的學(xué)生人數(shù)為
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PA⊥面ABC,且∠ABC=120°,PA=AB=BC=1,求異面直線AB與PC所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(x-1)+
4-2x
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log3(2x-1)<1,則x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線2x-my+1-3m=0,當(dāng)m變動(dòng)時(shí),所有直線都通過定點(diǎn)(  )
A、(-
1
2
,3)
B、(
1
2
,3)
C、(
1
2
,-3)
D、(-
1
2
,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線兩條漸近線的夾角為60°,該雙曲線的離心率為(  )
A、
3
2
B、
2
3
3
2
C、
3
或2
D、
2
3
3
或2

查看答案和解析>>

同步練習(xí)冊(cè)答案