如圖,在直三棱柱ABC—A1B1C1中, ,直線B1C與平面ABC成45°角.

(1)求證:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.

(1)參考解析;(2)

解析試題分析:(1)要證明平面⊥平面,從圖形中確定證明垂直于平面.從而要在平面中找到兩條相交直線與垂直.顯然.通過計算可得直線.所以可得直線與平面垂直.
(2)要求二面角A—B1C—B的余弦值,要找的這二面角的平面角.通過計算可得是等邊三角形,并且是等腰直角三角形.所以只要取的中點O.即可得角AOB為所求的二面角的平面角.應用余弦定理即可求得.
試題解析:(1)證:∵BB1⊥面ABC
∴B1C與面ABC所成的角為∠B1CB
∴∠B1CB=450
∵BB1=1
∴BC=1
又∵BA=1,AC=
∴AB2+BC2=AC2
∴AB⊥BC
∵BB1⊥AB
BB1∩BC=B
∴AB⊥面B1BCC1
∵A1B1//AB
∴A1B1⊥面B1BCC1.∵A1B1面A1B1C
∴面A1B1C⊥面B1BCC1
(2)因為直角三角形中,.所以.所以為等邊三角形.又因為為等腰三角形.所以取得中點O,連結AO,BO,則所以為二面角A--B的平面角.因為直角三角形中. .在等邊三角形中. .所以在三角形中.
考點:1.面面垂直的判定定理.2.求二面角.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,平面,是矩形,,點的中點,點是邊上的動點.

(Ⅰ)求三棱錐的體積;
(Ⅱ)當點的中點時,試判斷與平面的位置關系,并說明理由;
(Ⅲ)證明:無論點在邊的何處,都有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是正方形,⊥平面,

(1)求證:
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知AB為圓O的直徑,點D為線段AB上一點,且,點C為圓O上一點,且.點P在圓O所在平面上的正投影為點D,PD=DB.

(1)求證:平面
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,側面是邊長為2的正三角形,且與底面垂直,底面的菱形,的中點.

(Ⅰ)求與底面所成角的大小;
(Ⅱ)求證:平面;(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,⊥面,為線段上的點.

(Ⅰ)證明:⊥面 ;
(Ⅱ)若的中點,求所成的角的正切值;
(Ⅲ)若滿足⊥面,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖的幾何體中,平面,平面,△為等邊三角形,,的中點.

(1)求證:平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖四棱錐中,底面是平行四邊形,平面,垂足為,上且,,的中點,四面體的體積為.

(1)求過點P,C,B,G四點的球的表面積;
(2)求直線到平面所成角的正弦值;
(3)在棱上是否存在一點,使,若存在,確定點的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱中,,,且中點.

(I)求證:平面;
(Ⅱ)求證:平面.

查看答案和解析>>

同步練習冊答案