如圖,P為平行四邊形ABCD所在平面外一點(diǎn),M、N分別為AB、PC的中點(diǎn),平面PAD∩平面PBC=直線.

(1)求證:BC∥;

 
(2)試判斷MN與平面PAD是否平行?并證明你的結(jié)論.

   

 

       

 

 

 

 

 

 

 

 

 

【答案】

 

 
如圖,P為平行四邊形ABCD所在平面外一點(diǎn),M、N分別為AB、PC的中點(diǎn),平面PAD∩平面PBC=直線.

(1)求證:BC∥;

(2)試判斷MN與平面PAD是否平行?并證明你的結(jié)論.

BC//平面PAD

 
(1)證明:由已知    BC//AD

平面PAD∩平面PBC=

 
              AD平面PAD

               BC//

(2)平行

延長CM,DA交于Q,連接PQ,易證M為CQ的中點(diǎn),

又N為PC的中點(diǎn),

∴MN//PQ

∴MN//平面PAD

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知平行四邊形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=a(a>0),M是線段EF的中點(diǎn).
(1)求證:AC⊥BF;
(2)若二面角F-BD-A的大小為60°,求a的值;
(3)令a=1,設(shè)點(diǎn)P為一動(dòng)點(diǎn),若點(diǎn)P從M出發(fā),沿棱按照M→E→C的路線運(yùn)動(dòng)到點(diǎn)C,求這一過程中形成的三棱錐P-BFD的體積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

26、如圖,已知P為平行四邊形ABCD所在平面外一點(diǎn),M為PB的中點(diǎn),
求證:PD∥平面MAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平行四邊形ABCD中,AD=2,CD=
2
,∠ADC=45°,AE⊥BC,垂足為E,沿直線AE將△BAE翻折成△B′AE,使得平面B′AE⊥平面AECD.連接B′D,P是B′D上的點(diǎn).
(I)當(dāng)B′P=PD時(shí),求證CP⊥平面AB′D;
(Ⅱ)當(dāng)B′P=2PD時(shí),求二面角P-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,P為平行四邊形ABCD所在平面外一點(diǎn),M、N分別為AB、PC的中點(diǎn),平面PAD∩平面PBC=l.
(1)判斷BC與l的位置關(guān)系,并證明你的結(jié)論;
(2)判斷MN與平面PAD的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案