已知函數(shù)時(shí), 只有一個(gè)實(shí)根;當(dāng)∈(0,4)時(shí),有3個(gè)相異實(shí)根,

現(xiàn)給出下列四個(gè)命題:

有一個(gè)相同的實(shí)根;

有一個(gè)相同的實(shí)根;

的任一實(shí)根大于的任一實(shí)根;

的任一實(shí)根小于的任一實(shí)根.

其中正確命題的序號是           

 

【答案】

(1),(2),(4)

【解析】

試題分析:由題意y=f(x)圖象應(yīng)為先增后減再增,極大值為4,極小值為0.f(x)-k=0的根的問題可轉(zhuǎn)化為f(x)=k,即y=k和y=f(x)圖象交點(diǎn)個(gè)數(shù)問題。根據(jù)下圖可知答案為:①②④。

考點(diǎn):函數(shù)的極值與單調(diào)性;函數(shù)的零點(diǎn)。

點(diǎn)評:本題主要考查方程根的問題,方程根的問題?對應(yīng)函數(shù)的零點(diǎn)問題?兩個(gè)函數(shù)圖象的交點(diǎn)問題,常用為數(shù)形結(jié)合求解.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
2
[x2-2(2a-1)x+8](a∈R)
(1)若使函數(shù)f(x)在[a,+∞﹚上為減函數(shù),求a的取值范圍;
(2)當(dāng)a=
3
4
時(shí),求y=f(sin(2x-
π
3
)
),x∈[
π
12
π
2
]的值域.
(3)若關(guān)于x的方程f(x)=-1+log
1
2
(x+3)
在[1,3]上有且只有一解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•韶關(guān)一模)已知函數(shù)f(x)=ax3+bx2+(b-a)x(a,b是不同時(shí)為零的常數(shù)),其導(dǎo)函數(shù)為f'(x).
(1)當(dāng)a=
1
3
時(shí),若不等式f′(x)>-
1
3
對任意x∈R恒成立,求b的取值范圍;
(2)若函數(shù)f(x)為奇函數(shù),且在x=1處的切線垂直于直線x+2y-3=0,關(guān)于x的方程f(x)=-
1
4
t
在[-1,t](t>-1)上有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•韶關(guān)一模)已知函數(shù)f(x)=ax3+bx2+(b-a)x(a,b是不同時(shí)為零的常數(shù)),其導(dǎo)函數(shù)為f′(x).
(1)當(dāng)a=
1
3
時(shí),若不等式f′(x)>-
1
3
對任意x∈R恒成立,求b的取值范圍;
(2)求證:函數(shù)y=f′(x)在(-1,0)內(nèi)至少存在一個(gè)零點(diǎn);
(3)若函數(shù)f(x)為奇函數(shù),且在x=1處的切線垂直于直線x+2y-3=0,關(guān)于x的方程f(x)=-
1
4
t在[-1,t](t>-1)上有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•海珠區(qū)一模)已知函數(shù)f(x)=x3+3ax-1
(1)若函數(shù)y=f(x)在x=-1時(shí)有與x軸平行的切線,求f(x)的表達(dá)式;
(2)設(shè)g(x)=
13
[af'(x)-3a2+3],其中f-1(x)是f(x)的導(dǎo)函數(shù),若函數(shù)g(x)的圖象與直線y=x相切,求a的值;
(3)設(shè)a=-m2,當(dāng)實(shí)數(shù)m在什么范圍內(nèi)變化時(shí),函數(shù)y=f(x)的圖象與直線y=3只有一個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州模擬)已知函數(shù)f(x)=
a
x
+lnx
,g(x)=
1
2
bx2-2x+2
,a,b∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)記函數(shù)h(x)=f(x)+g(x),當(dāng)a=0時(shí),h(x)在(0,1)上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)記函數(shù)F(x)=|f(x)|,證明:存在一條過原點(diǎn)的直線l與y=F(x)的圖象有兩個(gè)切點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案