某三次函數(shù)當(dāng)x=1時有極大值4,當(dāng)x=3時有極小值0,且函數(shù)圖象過原點,則此函數(shù)為(  )
分析:設(shè)三次函數(shù)為y=ax3+bx2+cx+d,因為過原點,所以常數(shù)項為d=0,y'=3ax2+2bx+c,根據(jù)該函數(shù)當(dāng)x=1時有極大值4,當(dāng)x=3時,有極小值0,可得
1+3=-
2b
3a
1×3=
c
3a
a+b+c=4
,從而可求a=1,b=-6,c=9,故可得三次函數(shù).
解答:解:設(shè)三次函數(shù)為y=ax3+bx2+cx+d
因為過原點,所以常數(shù)項為d=0
∴y=ax3+bx2+cx
∴y'=3ax2+2bx+c
由于該函數(shù)當(dāng)x=1時有極大值4,當(dāng)x=3時,有極小值0,
所以3ax2+2bx+c=0有兩個實根1和3
1+3=-
2b
3a
1×3=
c
3a
a+b+c=4

∴a=1,b=-6,c=9
所以三次函數(shù)為y=x3-6x2+9x
故選C.
點評:本題以函數(shù)的性質(zhì)為載體,考查函數(shù)解析式的求解,解題的關(guān)鍵是正確運用導(dǎo)數(shù),合理建立方程組.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

某三次函數(shù)當(dāng)x=1時有極大值4,當(dāng)x=3時有極小值0,且函數(shù)圖象過原點,則此函數(shù)為


  1. A.
    y=x3+6x2+9x
  2. B.
    y=x3-6x2-9x
  3. C.
    y=x3-6x2+9x
  4. D.
    y=x3+6x2-9x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某三次函數(shù)當(dāng)x=1時有極大值4,當(dāng)x=3時有極小值0,且函數(shù)圖象過原點,則此函數(shù)為(  )

    A.y=x3+6x2+9x

    B.y=x3-6x2-9x

    C.y=x3-6x2+9x

    D.y=x3+6x2-9x

      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第1章 導(dǎo)數(shù)及其應(yīng)用》2010年單元測試卷(巴蜀中學(xué))(文科)(解析版) 題型:選擇題

某三次函數(shù)當(dāng)x=1時有極大值4,當(dāng)x=3時有極小值0,且函數(shù)圖象過原點,則此函數(shù)為( )
A.y=x3+6x2+9
B.y=x3-6x2-9
C.y=x3-6x2+9
D.y=x3+6x2-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某三次函數(shù)當(dāng)x=1時有極大值4,當(dāng)x=3時有極小值0,且函數(shù)圖象過原點,則此函數(shù)為(  )
A.y=x3+6x2+9xB.y=x3-6x2-9x
C.y=x3-6x2+9xD.y=x3+6x2-9x

查看答案和解析>>

同步練習(xí)冊答案