已知曲線C的參數(shù)方程為
x=
2
cosA
y=sinA
(A為參數(shù)).
(1)設M(x,y)是曲線C上的任一點,求
2
x+2y最大值.
(2)過點N(2,0)的直線l與曲線C交于P,Q兩點,且滿足OP⊥OQ(O為坐標原點),求直線l的方程.
考點:橢圓的參數(shù)方程,直線與圓錐曲線的關系
專題:綜合題,圓錐曲線的定義、性質與方程
分析:(1)利用參數(shù)方程設出M的坐標,再利用三角函數(shù)求出
2
x+2y最大值;
(2)設出直線方程,將直線方程與橢圓方程聯(lián)立,利用韋達定理得到交點的坐標滿足的關系,利用向量垂直的充要條件列出等式,求出直線的斜率,即得到直線的方程.
解答: 解:(1)∵M點在曲線上,∴M(
2
cosA,sinA)
2
x+y=2cosA+2sinA=2
2
sin(A+
π
4
),
2
x+2y的最大值為2
2
;
(2)設直線的方程為y=k(x-2),且與曲線交點P(x1,y1),Q(x2,y2),
由已知得曲線C的方程是橢圓x2+2y2=2,
把直線方程與橢圓方程聯(lián)立得(2k2+1)x2-8k2x+8k2-2=0
有x1+x2=
8k2
2k2+1
,x1x2=
8k2-2
1+2k2

∴y1y2=
2k2
1+2k2

∵OP⊥OQ,
∴y1y2+x1x2=0即
8k2-2
1+2k2
+
2k2
1+2k2
=0
解得:k=±
5
5

∴所求直線PQ的方程為y=±
5
5
(x-2).
點評:解決直線與圓錐曲線的位置關系的問題,一般將直線的方程與圓錐曲線方程聯(lián)立,利用韋達定理找突破口.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)和g(x)分別由下表給出,則f(f(1))=
 
,g(f(3))=
 

 1 2 3 4
f(x)  2  3  4  1 
 x 2 3 4
g(x)  2 1 4 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x-1)是偶函數(shù)(x∈R且x≠0)且在(0,+∞)上單調遞增,f(-2)=0,則關于x的不等式:(x+1)f(x)>0的解集是( 。
A、(-∞,-2)∪(-1,+∞)
B、(-2,-1)∪(0,+∞)
C、(-2,0)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=(
1
4
x+(
1
2
x-1,x∈[0,+∞)的值域為( 。
A、(-
5
4
,1]
B、[-
5
4
,1]
C、(-1,1]
D、[-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=
3
5
,an=2-
1
an-1
,(n≥2),求an的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-x2([x]+
3
2
)+x,x∈[0,2),(其中[x]表示不大于x的最大整數(shù),如[0.1]=0,[-0.2]=-1),g(x)=kx(k≠0),若函數(shù)f(x)的圖象與函數(shù)g(x)的圖象有兩個不同的交點,則k的取值范圍是( 。
A、(-
9
16
,-
1
2
]∪(
7
16
,
1
2
]
B、(-
1
2
,0)∪[
1
2
,1]
C、(-
1
2
,0)∪[
1
2
,1]∪{-
9
16
,
7
16
}
D、(-
1
2
,0)∪[
1
2
,1)∪{-
9
16
,
7
16
}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=αx+
b
x
(其中α,b為常數(shù))的圖象經過﹙1,2﹚,﹙2,
5
2
)兩點.
(Ⅰ)求函數(shù)f(x)的解析式,并判斷f(x)的奇偶性.
(Ⅱ)用定義證明f(x)在區(qū)間﹙0,1]上單調遞減.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,其圖象關于x=
5
6
π對稱的是( 。
A、y=sin(x-
π
3
B、y=sin(x-
5
6
π
C、y=sin(x+
π
6
D、y=sin(x+
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點(-1,0),當直線l與圓x2+y2=2x有兩個交點時,其斜率k的取值范圍是( 。
A、(-
2
,
3
B、(-
2
,
2
C、(-1,1)
D、(-
3
3
3
3

查看答案和解析>>

同步練習冊答案