5.函數(shù)f(x)=2cos2x•($\sqrt{3}$cos2x-3sin2x)-$\sqrt{3}$的最小正周期是$\frac{π}{2}$.

分析 利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用余弦函數(shù)的周期性求得它的最小正周期.

解答 解:函數(shù)f(x)=2cos2x•($\sqrt{3}$cos2x-3sin2x)-$\sqrt{3}$=2$\sqrt{3}$cos22x-6sin2xcos2x-$\sqrt{3}$ 
=2$\sqrt{3}$•$\frac{1+cos4x}{2}$-3sin4x-$\sqrt{3}$=2$\sqrt{3}$($\frac{1}{2}$cos4x-$\frac{\sqrt{3}}{2}$sin4x)=2$\sqrt{3}$cos(4x+$\frac{π}{3}$),
故它的最小正周期為$\frac{2π}{4}$=$\frac{π}{2}$,
故答案為:$\frac{π}{2}$.

點(diǎn)評(píng) 本題主要考查三角恒等變換,余弦函數(shù)的周期性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知等比數(shù)列{an}中,a1+a2=3,a1a2a3=8,則{an}的前n項(xiàng)和Sn=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在直角坐標(biāo)系xOy中,已知點(diǎn)A(1,1),B(3,3),點(diǎn)C在第二象限,且△ABC是以∠BAC為直角的等腰直角三角形.點(diǎn)P(x,y)在△ABC三邊圍城的區(qū)域內(nèi)(含邊界).
(1)若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$求|${\overrightarrow{OP}}$|;
(2)設(shè)$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),求m+2n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.($\sqrt{x}$+$\frac{2}{{x}^{2}}$)n展開(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式的常數(shù)項(xiàng)是180.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知cosα=-$\frac{\sqrt{5}}{5}$,α∈(π,$\frac{3π}{2}$).
(1)求tanα的值;
(2)求$\frac{3sin(π+α)+cos(3π-α)}{sin(\frac{3π}{2}+α)+2sin(α-2π)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.給出下列關(guān)于互不重合的三條直線m、l、n和兩個(gè)平面α、β的三個(gè)命題:
①若m?α,l⊥α=A,點(diǎn)A∉m,則l與m不共面;
②若l∥α,m∥β,α∥β,則l∥m;
③若l?α,m?α,l∩m=A,l∥β,m∥β,則α∥β,
其中為真命題的是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知圓O:x2+y2=4,直線l:x+y=m,若圓O上恰有4個(gè)不同點(diǎn)到l的距離為1,則實(shí)數(shù)m的取值范圍為$-\sqrt{2}<m<\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),則函數(shù)F(x)=f(x+1)+$\sqrt{3-x}$的定義域?yàn)椋ā 。?table class="qanwser">A.[2,3]B.(1,3]C.(0,3]D.(-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知集合A={(x,y)|-2<y<1,x∈Z,y∈Z},B=$\{(x,y)|\frac{π}{2}<x<π,x∈Z,y∈Z\}$,則A∩B的真子集的個(gè)數(shù)為15.

查看答案和解析>>

同步練習(xí)冊(cè)答案