等差數(shù)列中,若a1 + a2 + a3 + a4 + a5 = 20,則a3 = ( )
A.4B.5C.6D.7
選A
由等差數(shù)列的性質(zhì)將已知等式化為5a3 = 20,∴a3 = 4,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)y=f(x)是一次函數(shù),f(0)=1,且f(1),f(4),f(13)成等比數(shù)列,則=      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)已知點(diǎn)(N)順次為直線上的點(diǎn),點(diǎn)(N)順次為軸上的點(diǎn),其中,對(duì)任意的N,點(diǎn)、構(gòu)成以為頂點(diǎn)的等腰三角形.(Ⅰ)證明:數(shù)列是等差數(shù)列;(Ⅱ)求證:對(duì)任意的N,是常數(shù),并求數(shù)列的通項(xiàng)公式;   (Ⅲ)在上述等腰三角形中是否存在直角三角形,若存在,求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)設(shè).?dāng)?shù)列滿(mǎn)足
.(1)求證:是等差數(shù)列;
(2)求證: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)已知函數(shù)f(x)滿(mǎn)足2ax·f(x)=2f(x)-1,f(1)=1,設(shè)無(wú)窮數(shù)列{an}滿(mǎn)足an+1=f(an).(1)求函數(shù)f(x)的表達(dá)式;(2)若a1=3,從第幾項(xiàng)起,數(shù)列{an}中的項(xiàng)滿(mǎn)足anan+1;(3)若a1m為常數(shù)且mN+,m≠1),求最小自然數(shù)N,使得當(dāng)nN時(shí),總有0<an<1成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分) 已知數(shù)列{an}的前項(xiàng)和為Sn,且滿(mǎn)足a1=1,2Sn=nan+1(1)求an; (2)設(shè)bn= ,求b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義“等和數(shù)列”,在一個(gè)數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的和都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等和數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公和。已知數(shù)列是等和數(shù)列且,公和為5,那么的值為_(kāi)______,且這個(gè)數(shù)列前21項(xiàng)和的值為_(kāi)______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是等差數(shù)列,若,則數(shù)列前8項(xiàng)的和為(     )
A.128B.80C.64D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在數(shù)列中,,前n項(xiàng)和,其中a、b、c為常數(shù),則(A)
A.                                 B.                                 C.                                 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案