精英家教網 > 高中數學 > 題目詳情
若復數z=
a1+i
+i
為實數,則實數a=
 
分析:首先進行復數的通分運算,再進行復數的除法運算,分子和分母同乘以分母的共軛復數,整理成最簡形式,寫出復數的代數形式,根據復數是一個實數,得到a的值.
解答:解:∵復數z=
a
1+i
+i
=
a+i(1+i)
1+i

=
a-1+i
1+i
=
(a-1+i)(1-i)
(1+i)(1-i)
=
a+(2-a)i
2

∵復數是一個實數,
∴2-a=0,
∴a=2,
故答案為:2.
點評:本題考查復數的代數形式的混合運算,考查復數的基本概念,考查最基本的運算,本題是一個基礎題,又是每年高考必考的題目.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•深圳一模)在實數集R中,我們定義的大小關系“>”為全體實數排了一個“序”.類似地,我們在復數集C上也可以定義一個稱為“序”的關系,記為“>”.定義如下:對于任意兩個復數z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i為虛數單位),“z1>z2”當且僅當“a1>a2”或“a1=a2且b1>b2”.下面命題為假命題的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•閘北區(qū)一模)在實數集R中,我們定義的大小關系“>”為全體實數排了一個“序”.類似的,我們在復數集C上也可以定義一個稱為“序”的關系,記為“>”.定義如下:對于任意兩個復數z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2當且僅當“a1>a2”或“a1=a2且b1>b2”.
按上述定義的關系“>”,給出如下四個命題:
①1>i>0; 
②若z1>z2,z2>z3,則z1>z3;
③若z1>z2,則,對于任意z∈C,z1+z>z2+z;
④對于復數z>0,若z1>z2,則zz1>zz2
其中真命題的序號為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•閘北區(qū)一模)在實數集R中,我們定義的大小關系“>”為全體實數排了一個“序”.類似的,我們在復數集C上也可以定義一個稱為“序”的關系,記為“>”.定義如下:對于任意兩個復數z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2當且僅當“a1>a2”或“a1=a2且b1>b2”.
按上述定義的關系“>”,給出如下四個命題:
①1>i>0;
②若z1>z2,z2>z3,則z1>z3;
③若z1>z2,則,對于任意z∈C,z1+z>z2+z;
④對于復數z>0,若z1>z2,則zz1>zz2
其中所有真命題的個數為( 。荆荆

查看答案和解析>>

科目:高中數學 來源: 題型:

在實數集R中,我們定義的大小關系“>”為全體實數排了一個“序”,類似地,我們在復數集C上也可以定義一個稱為“序”的關系,記為“?”.定義如下:對于任意兩個復數z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i為虛數單位),“z1?z2”當且僅當“a1>a2”或“a1=a2且b1>b2”.
下面命題:
①1?i?0;
②若z1?z2,z2?z3,則z1?z3;
③若z1?z2,則對于任意z∈C,z1+z?z2+z;
④對于復數z?0,若z1?z2,則z•z1?z•z2
其中真命題是
 
.(寫出所有真命題的序號)

查看答案和解析>>

同步練習冊答案