求橢圓x2+4y2=16的長軸和短軸長,離心率,焦點坐標(biāo),頂點坐標(biāo).
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:將橢圓化成標(biāo)準(zhǔn)方程,算出a、b、c,再根據(jù)橢圓的基本概念,即可得到該橢圓的長軸長、短軸長、離心率、焦點和頂點坐標(biāo).
解答: 解:橢圓方程化為
x2
16
+
y2
4
=1
(1分)
∴a=4,b=2,c=2
3
    (4分)
∴長軸2a=8,短軸2b=4(5分)
離心率e=
c
a
=
3
2
(6分)
焦點坐標(biāo)(-2
3
,0)(2
3
,0)(8分)
頂點坐標(biāo)(-4,0)(4,0)(0,2)(0,-2)(10分)
點評:本題給出已知橢圓的方程,求它的長軸長、短軸長、離心率、焦點和頂點坐標(biāo).著重考查了橢圓的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若logab•log3a=2,則b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,x)  
b
=(2x+3,-x),x∈R
(1)若
a
b
,求x的值;
(2)若y=(
a
-
b
)•
b
,求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市高速公路收費站入口處的安全標(biāo)識墩如圖(1)所示墩的上半部分是正四棱錐P-EFGH,下半部分是長方體ABCD-EFGH,圖(2)、(3)分別是該標(biāo)識墩的主視圖和俯視圖.

(1)請畫出該安全標(biāo)識墩的側(cè)視圖,并標(biāo)注上相關(guān)線段的長度.
(2)為了更好地保證高速公路上的交通安全,現(xiàn)打算給安全標(biāo)識墩重新涂上紅色的油漆,每平方厘米用油漆1毫升,涂100個這樣的安全標(biāo)識墩需用多少油漆?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD中,
AB
=
a
,
AD
=
b
,H,M是AD,DC的中點,BF=
1
3
BC,
(1)以
a
,
b
為基底表示向量
AM
HF
;
(2)若|
a
|=3,|
b
|=4,
a
b
的夾角為120°,求
AM
HF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商店試銷某種商品20天,獲得如表數(shù)據(jù):
日銷售量(件)0123
頻數(shù)1685
試銷結(jié)束后(假設(shè)該商品的日銷售量的分布規(guī)律不變),設(shè)某天開始營業(yè)時有該商品3件,當(dāng)天營業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存貨少于2件,則當(dāng)天進貨補充至3件,否則不進貨,將頻率視為概率.
(Ⅰ)設(shè)每銷售一件該商品獲利1000元,某天銷售該商品獲利情況如表,完成表,并求試銷期間日平均獲利數(shù);
日獲利(元)0100020003000
頻率
(Ⅱ)求第二天開始營業(yè)時該商品的件數(shù)為3件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=1+3n-2n2,(n∈N*),求該數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a(x-
1
x
)-2lnx(a∈R).
(1)當(dāng)-1<a<1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)g(x)=-
a
x
,若至少存在一個x0∈[1,4],使得f(x0)>g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,設(shè)三角形ABC的頂點分別為A(0,a),B(b,0),C(c,0),點P(0,p)在線段AO上(異于端點),設(shè)a,b,c,p均為非零實數(shù),直線BP,CP分別交AC,AB于點E,F(xiàn),一同學(xué)已正確算的OE的方程:(
1
b
-
1
c
)x+(
1
p
-
1
a
)y=0,請你求OF的方程:(
 
)x+(
1
p
-
1
a
)y=0.

查看答案和解析>>

同步練習(xí)冊答案