【題目】已知拋物線:經(jīng)過點(diǎn),過點(diǎn)作直線交于,兩點(diǎn),、分別交直線于,兩點(diǎn).
(1)求的方程和焦點(diǎn)坐標(biāo);
(2)設(shè),求證:為定值.
【答案】(1)拋物線:,焦點(diǎn)(2)證明見解析
【解析】
(1)把的坐標(biāo)代入拋物線方程中求出的方程,寫出焦點(diǎn)坐標(biāo)即可;
(2)設(shè)出直線的方程,與拋物線方程聯(lián)立,根據(jù)判別式求出直線方程中的參數(shù)取值范圍,設(shè)出直線的方程,與聯(lián)立,求出點(diǎn)坐標(biāo),同理求出點(diǎn)坐標(biāo),求出的表達(dá)式,結(jié)合根與系數(shù)的關(guān)系,最后計(jì)算的結(jié)果是常數(shù)即可.
解:(1)∵拋物線經(jīng)過點(diǎn),
∴,∴,
拋物線:,焦點(diǎn).
證明:(2)∵過點(diǎn)且與拋物線交于兩點(diǎn),
∴的斜率存在且不為0.
設(shè):,
,
由得,即或,
設(shè),,
則,,
:,
令得,
∴,
同理得,
∴
,
其中,
,
,
將以上3式代入上式得
為定值.
(或時(shí),)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長方形中,,,現(xiàn)將長方形沿對(duì)角線折起,使,得到一個(gè)四面體,如圖所示.
(1)試問:在折疊的過程中,異面直線與能否垂直?若能垂直,求出相應(yīng)的的值;若不垂直,請說明理由;
(2)當(dāng)四面體體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的直角坐標(biāo)方程,并求時(shí)直線的普通方程;
(2)直線和曲線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中為正實(shí)數(shù).
(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別是,,離心率為,直線被橢圓C截得的線段長為.
(1)求橢圓C的方程;
(2)過點(diǎn)且斜率為k的直線l交橢圓C于A,B兩點(diǎn),交x軸于P點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為M,直線BM交x軸于Q點(diǎn).求證:(O為坐標(biāo)原點(diǎn))為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)若,當(dāng)三棱錐的體積最大時(shí),求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若對(duì)任意的均有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com