已知函數(shù)f(x)=
1
3
x3-a2x+
1
2
a
(a∈R).
(Ⅰ)若a=1,求函數(shù)f(x)在[0,2]上的最大值;
(Ⅱ)若對任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范圍.
(I)當(dāng)a=1時,f(x)=
1
3
x3
-x+
1
2
,f′(x)=x2-1,
令f′(x)=0,得x1=-1,x2=1,
列表:
x 0 (0,1) 1 (1,2) 2
f′(x) -1 - 0 + 3
f(x)
1
2
-
1
6
7
6
∴當(dāng)x∈[0,2]時,f(x)最大值為f(2)=
7
6

(Ⅱ)f′(x)=x2-a2=(x-a)(x+a),令f′(x)=0,得x1=-a,x2=a,
①若a<0,在(0,-a)上,f′(x)<0,f(x)單調(diào)遞減,在(-a,+∞)上,f′(x)>0,f(x)單調(diào)遞增.
所以,f(x)在x=-a時取得最小值f(-a)=-
1
3
a3+a3+
a
2
=a(
2
3
a2+
1
2
),
因?yàn)閍<0,
2
3
a2+
1
2
>0,所以f(-a)=a(
2
3
a2+
1
2
)<0.
所以當(dāng)a<0時,對任意x∈(0,+∞),f(x)>0不成立;
②若a=0,f′(x)=x2≥0,所以f(x)在(0,+∞)上是增函數(shù),
所以當(dāng)a=0時,有f(x)>f(0)=0;
③若a>0,在(0,a)上,f′(x)<0,f(x)單調(diào)遞減,在(a,+∞)上,f′(x)>0,f(x)單調(diào)遞增.
所以,f(x)在x=a時取得最小值f(a)=
1
3
a3-a3+
a
2
=-a(
2
3
a2-
1
2
),
令f(a)=-a(
2
3
a2-
1
2
)>0,由a>0,得
2
3
a2-
1
2
<0,0<a<
3
2
,
 所以當(dāng)0<a<
3
2
時,對任意x>0,f(x)>0都成立.
綜上,a的取值范圍是[0,
3
2
].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當(dāng)a=1時,求證對任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是(  )

查看答案和解析>>

同步練習(xí)冊答案