已知雙曲線的方程是16x2-9y2=144.

(1)求這雙曲線的焦點(diǎn)坐標(biāo)、離心率和漸近線方程;

(2)設(shè)F1和F2是雙曲線的左、右焦點(diǎn),點(diǎn)P在雙曲線上,且|PF1|·|PF2|=32,求∠F1PF2的大。

答案:
解析:

  解:(1)由16x2-9y2=144得=1,…………2分

  ∴a=3,b=4,c=5.焦點(diǎn)坐標(biāo)F1(-5,0),F(xiàn)2(5,0),…………4分

  離心率e=,…………6分

  漸近線方程為y=±x.…………8分

  (2)||PF1|-|PF2||=6,cos∠F1PF2…………10分

 。=0.…………12分

  ∴∠F1PF2=90°.…………14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程是16x2-9y2=144.
(1)求這雙曲線的焦點(diǎn)坐標(biāo)、離心率和漸近線方程;
(2)設(shè)F1和F2是雙曲線的左、右焦點(diǎn),點(diǎn)P在雙曲線上,且|PF1|•|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程是
x2
16
-
y2
8
=1,點(diǎn)P在雙曲線上,且到其中一個(gè)焦點(diǎn)F1的距離為10,另一個(gè)焦點(diǎn)為F2,點(diǎn)N是PF1的中點(diǎn),則ON的大。∣為坐標(biāo)原點(diǎn))為
1或9
1或9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程是-=1,求以雙曲線的右頂點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程及拋物線的準(zhǔn)線方程.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程是

 (1)求該雙曲線的焦點(diǎn)坐標(biāo)、離心率和漸近線方程;

(2) 設(shè)、是其左、右焦點(diǎn),點(diǎn)P在雙曲線上,且,求 的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):8.2 雙曲線(解析版) 題型:解答題

已知雙曲線的方程是16x2-9y2=144.
(1)求這雙曲線的焦點(diǎn)坐標(biāo)、離心率和漸近線方程;
(2)設(shè)F1和F2是雙曲線的左、右焦點(diǎn),點(diǎn)P在雙曲線上,且|PF1|•|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案