求y=f(x)=數(shù)學(xué)公式的不連續(xù)點(diǎn).

解:由x≠0,x+1≠0,x-1≠0,求出f(x)的定義域?yàn)閧x|x≠-1,0,1},
故,f(x)的不連續(xù)點(diǎn)為x=-1,x=0和x=1.
分析:求不連續(xù)點(diǎn)其實(shí)就是變相的求定義域中的斷開(kāi)點(diǎn).
求定義域時(shí)注意分母不為0,即:x≠0,x+1≠0,x-1≠0,,進(jìn)而求出x的取值范圍,
這里要求出的是定義域中不能取到的x的值.
點(diǎn)評(píng):考查對(duì)不連續(xù)點(diǎn)含義的理解,函數(shù)定義域的另外一種表述.在求定義域時(shí)注意分式中分母不能是0,對(duì)數(shù)函數(shù)的真數(shù)一定要大于0,偶次開(kāi)方時(shí)被開(kāi)方數(shù)一定非負(fù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=asinx+bcosx+c的圖象上有一個(gè)最低點(diǎn)(
11π
6
,-1)

(Ⅰ)如果x=0時(shí),y=-
3
2
,求a,b,c.
(Ⅱ)如果將圖象上每個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來(lái)的
3
π
,然后將所得圖象向左平移一個(gè)單位得到y(tǒng)=f(x)的圖象,并且方程f(x)=3的所有正根依次成為一個(gè)公差為3的等差數(shù)列,求y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x(a∈R),f′(x)為f(x)的導(dǎo)數(shù).
(1)當(dāng)a=-3時(shí),求y=f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)g(x)=
19
6
x-
1
3
,是否存在實(shí)數(shù)x1=-
1
3
,對(duì)于任意的x1∈[-1,1],存在x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立?若存在,求出
1
3
≤h(x1)≤6
的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-x2-8x-
1
3
,直線 l:10x+y+c=0.
(1)求y=f′(x).
(2)求證直線l與y=f(x)的圖象不相切.
(3)若當(dāng)x∈[-1,1]時(shí),函數(shù)y=f(x)的圖象在直線l的下方,求c范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為坐標(biāo)原點(diǎn),
OA
=(2sin2x,1),
OB
=(1,-2
3
sinxcosx+1)
,f(x)=-
1
2
OA
OB
+1

(1)求y=f(x)的最小正周期;
(2)將f(x)圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大為原來(lái)的兩倍,再將所得圖象向左平移
π
6
個(gè)單位后,所得圖象對(duì)應(yīng)的函數(shù)為g(x),且α∈[
π
6
,  
3
],  β∈(-
6
,-
π
3
)
,g(α)=
3
5
,  g(β)=-
4
5
,求cos2(α-β)-1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)的圖象是由y=sinx圖象經(jīng)過(guò)如下變化而得:①y=sinx的圖象向左平移
π
6
個(gè)單位,②將①中圖象縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2
,③將②中圖象橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍
(1)求y=f(x)的最小正周期和對(duì)稱(chēng)軸
(2)△ABC中,a,b,c分別是角A,B,C對(duì)邊,且f(C)=2,c=1,ab=
3
,且a>b,求a,b
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案