已知雙曲線的漸近線方程為y=±
2
3
x,實軸長為12,它的標準方程為
 
考點:雙曲線的標準方程,雙曲線的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:利用分類討論思想和雙曲線的性質求解.
解答: 解:∵雙曲線的漸近線方程為y=±
2
3
x,實軸長為12,
∴當雙曲線的焦點在x軸上時,設雙曲線方程為
x2
a2
-
y2
b2
=1,a>0,b>0,
此時
b
a
=
2
3
2a=12
,解得a=6,b=4,
∴雙曲線方程為
x2
36
-
y2
16
=1

當雙曲線的焦點在y軸上時,設雙曲線方程為
y2
a2
-
x2
b2
=1,a>0,b>0,
此時
a
b
=
3
2
2a=12
,解得a=6,b=4,
∴雙曲線方程為
y2
36
-
x2
16
=1

故答案為:
x2
36
-
y2
16
=1
y2
36
-
x2
16
=1
點評:本題考查雙曲線的標準方程的求法,是中檔題,解題時要認真審題,注意雙曲線性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設集合A={x|k•360°+60°<x<k•360°+300°,k∈Z},B={x|k•360°-210°<x<k•360°,k∈Z},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,且該幾何體的體積是
3
2
,則正視圖中的x的值是( 。
A、
3
2
B、
9
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的不恒為零的函數(shù)f(x)滿足f(x)=
log(4-x)3+log4(
1
3
-x)(x≤0)
-
1
f(x+3)
(x>0)
,則f(30)的值為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足
x-y+1≥0
x+y≥0
x≤0
,則z=2x+3y的最大值是( 。
A、0
B、
1
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1
2
x2+x-4
(1)當x∈[-2,2]時,求f(x)的值域;
(2)若f(x)在區(qū)間[2a,a+1]上不單調,求實數(shù)a的取值范圍;
(3)求f(x)在區(qū)間[-2,t](t>-2)上的最小值g(t).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設y=f(x)是定義在R上的函數(shù),如果存在點A,對函數(shù)y=f(x)的圖象上的任意P點,P關于A的對稱點Q也在函數(shù)y=f(x)的圖象上,那么稱函數(shù)y=f(x)的圖象關于點A對稱,A稱為函數(shù)y=f(x)的圖象的一個對稱中心.
(1)求證:點A(2,0)是函數(shù)y=(x-2)3的對稱中心;
(2)設y=f(x)是定義在R上的函數(shù),求證:A(a,b)是函數(shù)y=f(x)圖象的一個對稱中心的充要條件是函數(shù)y=f(x+a)-b是奇函數(shù);
(3)試問函數(shù)f(x)=x3-2x2+3的圖象是否關于某點對稱?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線3x-4y-9=0與圓x2+y2=4的位置關系是( 。
A、相交且過圓心B、相切
C、相交但不過圓心D、相離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)對x>0有意義,當m,n∈(0,+∞)時,恒有f(mn)=f(m)+f(n)成立,并且f(2)=1,當x>1時,f(x)>0.
(1)求證:f(1)=0;
(2)求f(4)的值;
(3)求證:f(x)在(0,+∞) 上為增函數(shù);
(4)求滿足f(x)+f(
x-3
x
)<2的x的集合.

查看答案和解析>>

同步練習冊答案