(2013•懷化二模)已知m,n為不同的直線,α,β為不同的平面,給出下列四個(gè)命題:
①若m⊥α,n?α,則m⊥n;       
②若m⊥α,α⊥β,則m∥β;
③若m?α,n?α,m∥β,n∥β,則α∥β;
④若α⊥β,α∩β=m,n?α,n⊥m,則n⊥β.
其中所有正確命題的序號(hào)是(  )
分析:從空間中的線、面間的位置關(guān)系及平行垂直的判定定理和性質(zhì)定理入手,判斷四個(gè)命題的真假,可以借助于圖形,舉反例解答.
解答:解:由線面垂直的定義及性質(zhì)定理知①正確;
若m⊥α,α⊥β,則m∥β或m在β內(nèi),故②不正確;
由m?α,n?α,m∥β,n∥β,不能夠推出α∥β,因m和n不一定相交,故③不正確;
由面面垂直的性質(zhì)定理知④正確.
故答案選D.
點(diǎn)評(píng):該題主要考查了空間幾何中線、面間的位置關(guān)系及平行垂直的判定定理和性質(zhì)定理,是高考中每年必考的熱點(diǎn)問題之一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化二模)已知函數(shù)f(x)=x2+lg(x+
1+x2
)
,且f(2)=a,則f(-2)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化二模)已知角α,β的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸的正半軸重合,α,β∈(0,π),角β的終邊與單位圓交點(diǎn)的橫坐標(biāo)是-
5
13
,角α+β的終邊與單位圓交點(diǎn)的縱坐標(biāo)是
3
5
,則cosα=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化二模)已知一條直線的參數(shù)方程是
x=1+
1
2
t
y=-5+
3
2
t
(t為參數(shù)),另一條直線的方程是x-y-2
3
=0
,則兩直線的交點(diǎn)與點(diǎn)(1,-5)間的距離是
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化二模)已知f(x)=2ax-
b
x
+lnx
在x=1與x=
1
2
處都取得極值.
(Ⅰ) 求a,b的值;
(Ⅱ)設(shè)函數(shù)g(x)=x2-2mx+m,若對(duì)任意的x1∈[
1
2
,2]
,總存在x2∈[
1
2
,2]
,使得、g(x1)≥f(x2)-lnx2,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案