14.計算下列各式的值:
(I)0.064${\;}^{{-_{\;}}\frac{1}{3}}}$-(-$\frac{4}{5}}$)0+0.01${\;}^{\frac{1}{2}}}$;
(II)2lg5+lg4+ln$\sqrt{e}$.

分析 (I)利用有理指數(shù)冪的運算法則化簡求解即可.
(II)利用對數(shù)運算法則化簡求解即可.

解答 (本小題滿分12分)
解:(Ⅰ)${\;}_{\;}{0.064^{{-_{\;}}\frac{1}{3}}}-{({-\frac{4}{5}})^0}+{0.01^{\frac{1}{2}}}$$2lg5+lg4+ln\sqrt{e}$
=$[(0.4)^{3}]^{-\frac{1}{3}}$-1+$[(0.1)^{2}]^{\frac{1}{2}}$
=(0.4)-1-1+0.1
=$\frac{5}{2}$-1+$\frac{1}{10}$
=$\frac{8}{5}$.
(II)2lg5+lg4+ln$\sqrt{e}$
=2lg5+2lg2+$\frac{1}{2}$
=2+$\frac{1}{2}$
=$\frac{5}{2}$.

點評 本題考查對數(shù)運算法則以及有理指數(shù)冪的運算法則的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)是定義在R上的偶函數(shù),且周期為2,當0≤x≤1時,f(x)=x2,若直線y=x+a與曲線y=f(x)恰有兩個公共點,則實數(shù)a的值為(  )
A.n(n∈Z)B.2n(n∈Z)C.2n或2n-$\frac{1}{4}$(n∈Z)D.n或n-$\frac{1}{4}$(n∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.滿足條件{1,2}∪A={1,2}的所有非空集合A的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知點P(x,y)為橢圓$\frac{{x}^{2}}{4}$+y2=1上任意一點,點Q(0,3),則|PQ|的最大值 4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列四個命題:
①函數(shù)是其定義域到值域的映射;
②函數(shù)y=2x(x∈N)的圖象是一條直線;
③y=x與y=logaax(a>0且a≠1)表示同一個函數(shù);
④函數(shù)f(x)=ax+1-1的圖象過定點(-1,-1).
正確的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)=lnx+3x-10的零點所在的大致范圍是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.函數(shù)f(x)=$\left\{{\begin{array}{l}{x(x+4),x≥0}\\{x(x-4),x<0}\end{array}}$,若f(x)=12,則x=-2或2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設f(x)=ax2+(a-2)x-2(a∈R).
(I)解關于x的不等式f(x)≥0;
(II)若a>0,當-1≤x≤1時,f(x)≤0時恒成立,求a的取值范圍.
(III)若當-1<a<1時,f(x)>0時恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.非空集合G關于運算⊕滿足:
(1)對任意a,b∈G,都有a+b∈G;
(2)存在e∈G使得對于一切a∈G都有a⊕e=e⊕a=a,
則稱G是關于運算⊕的融洽集,
現(xiàn)有下列集合與運算:
①G是非負整數(shù)集,⊕:實數(shù)的加法;
②G是偶數(shù)集,⊕:實數(shù)的乘法;
③G是所有二次三項式構成的集合,⊕:多項式的乘法;
④G={x|x=a+b$\sqrt{2}$,a,b∈Q},⊕:實數(shù)的乘法;
其中屬于融洽集的是①④(請?zhí)顚懢幪枺?/div>

查看答案和解析>>

同步練習冊答案