4.已知集合A={x∈N|-$\sqrt{3}$≤x≤$\sqrt{3}$},則有( 。
A.-1∈AB.0∈AC.$\sqrt{3}$∈AD.2∈A

分析 根據(jù)元素與集合的關系進行判斷

解答 解:集合A={x∈N|-$\sqrt{3}$≤x≤$\sqrt{3}$}={0,1}.
對于A:-1∈A不對.
對于B:0∈A對;
對于C:$\sqrt{3}∈A$不對;
對于D:2∈A不對.
故選:B.

點評 本題主要考查元素與集合的關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=msinx+ncosx,且$f(\frac{π}{4})$是它的最大值,(其中m,n為常數(shù)且mn≠0),給出下列命題:
①$f(x+\frac{π}{4})$為偶函數(shù);
②函數(shù)f(x)的圖象關于點$(\frac{7π}{4},0)$對稱;
③$f(-\frac{3π}{4})$是函數(shù)f(x)的最小值;
④記函數(shù)f(x)的圖象在y右側與直線$y=\frac{m}{2}$的交點按橫坐標從小到大依次記為P1,P2,P3,P4,…,則|P2P4|=π;
⑤$\frac{n}{m}=1$.
其中真命題的有幾個?(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知f(x)在R上是奇函數(shù),且滿足f(x+5)=-f(x),當x∈(0,5)時,f(x)=x2-x,則f(2016)=( 。
A.-12B.-16C.-20D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d,a20,an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求由下列條件確定的圓x2+y2=4的切線方程:
(1)經(jīng)過點A(-$\sqrt{2}$,$\sqrt{2}$);
(2)經(jīng)過點B($\sqrt{3}$,1);
(3)切線斜率為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設集合M={0,1,2,4,8},N={x|x=2n,n∈N+},則M∩N等于( 。
A.{0,2,4}B.{1,2,4,8}C.{2,4,8}D.{0,2,4,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x)=-f(x+1)對任意x∈R成立,當x∈[-1,0]時f(x)=2x,則f($\frac{5}{2}$)=(  )
A.-$\frac{5}{2}$B.-1C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.不等式$\frac{1}{x}$<$\frac{1}{3}$的解集是( 。
A.(-∞,3)B.(3,+∞)C.(-∞,0)∪(3,+∞)D.(0,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.y=f(x)為偶函數(shù),又在(-∞,0)上為增函數(shù),則f(-1),f(4),f($\frac{11}{2}$)的大小關系是f($\frac{11}{2}$)<f(4)<f(-1).(用“<”號連接)

查看答案和解析>>

同步練習冊答案