已知橢圓的左、右焦點(diǎn)分別為、,P為橢圓 上任意一點(diǎn),且的最小值為.
(1)求橢圓的方程;
(2)動(dòng)圓與橢圓相交于A、B、C、D四點(diǎn),當(dāng)為何值時(shí),矩形ABCD的面積取得最大值?并求出其最大面積.
(1);(2)當(dāng)時(shí),矩形ABCD的面積最大,最大面積為.
【解析】
試題分析:(1)由于(定值)這個(gè)條件并結(jié)合余弦定理以及的最小值為這個(gè)條件可以求出的值,并由已知條件中的值可以求出,并最終求出橢圓的方程;(2)先設(shè)出、、、中其中一個(gè)點(diǎn)的坐標(biāo),然后根據(jù)這四點(diǎn)之間的相互對(duì)稱性將四邊形的面積用該點(diǎn)的坐標(biāo)進(jìn)行表示,結(jié)合這一條件將面積轉(zhuǎn)化為其中一個(gè)變量的二次函數(shù),利用二次函數(shù)的求最值的思想求出四邊形面積的最大值,并可以求出對(duì)應(yīng)的值.
試題解析:(1)因?yàn)镻是橢圓上一點(diǎn),所以.
在△中,,由余弦定理得
.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102910522247779699/SYS201310291054205024625989_DA.files/image025.png">,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102910522247779699/SYS201310291054205024625989_DA.files/image027.png">,所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102910522247779699/SYS201310291054205024625989_DA.files/image029.png">的最小值為,所以,解得.
又,所以.所以橢圓C的方程為.
(2)設(shè),則矩形ABCD的面積.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102910522247779699/SYS201310291054205024625989_DA.files/image038.png">,所以.
所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102910522247779699/SYS201310291054205024625989_DA.files/image041.png">且,所以當(dāng)時(shí),取得最大值24.
此時(shí),.
所以當(dāng)時(shí),矩形ABCD的面積最大,最大面積為.
考點(diǎn):橢圓的定義、余弦定理、二次函數(shù)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左、右焦點(diǎn)分別為,其右準(zhǔn)線上上存在點(diǎn)(點(diǎn)在 軸上方),使為等腰三角形.
⑴求離心率的范圍;
⑵若橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為,求的內(nèi)切圓的方程.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測(cè)考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
已知橢圓的左、右焦點(diǎn)分別為,, 點(diǎn)是橢圓的一個(gè)頂點(diǎn),△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)分別作直線,交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,,且,證明:直線過定點(diǎn)().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本題滿分14分) 已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中
F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題
(本小題滿分12分)
已知橢圓的左、右焦點(diǎn)分別為、,離心率,右準(zhǔn)線方程為.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過點(diǎn)的直線與該橢圓交于M、N兩點(diǎn),且,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com