【題目】某調(diào)查機(jī)構(gòu)對某校學(xué)生做了一個是否同意生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計情況如下表:

同意

不同意

合計

男生

a

5

女生

40

d

合計

100

(1)求 a,d 的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請說明理由;

(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學(xué)生中,采用隨機(jī)抽樣的方法抽取4 位學(xué)生進(jìn)行長期跟蹤調(diào)查,記被抽取的4位學(xué)生中持“同意”態(tài)度的人數(shù)為 X,求 X 的分布列及數(shù)學(xué)期望.

附:

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(1), 有97.5%的把握認(rèn)為是否同意父母生“二孩”與“性別”有關(guān);(2)詳見解析.

【解析】

(1)根據(jù)表格及同意父母生“二孩”占60%可求出, ,根據(jù)公式計算結(jié)果即可確定有97.5%的把握認(rèn)為是否同意父母生“二孩”與“性別”有關(guān)(2)由題意可知X服從二項分布,利用公式計算概率及期望即可.

(1)因為100人中同意父母生“二孩”占60%,

所以,

文(2)由列聯(lián)表可得

所以有97.5%的把握認(rèn)為是否同意父母生“二孩”與“性別”有關(guān)

(2)①由題知持“同意”態(tài)度的學(xué)生的頻率為,

即從學(xué)生中任意抽取到一名持“同意”態(tài)度的學(xué)生的概率為.由于總體容量很大,

故X服從二項分布,

從而X的分布列為

X

0

1

2

3

4

X的數(shù)學(xué)期望為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】田忌賽馬是史記中記載的一個故事,說的是齊國將軍田忌經(jīng)常與齊國眾公子賽馬,孫臏發(fā)也們的馬腳力都差不多,都分為上、中、下三等于是孫臏給田忌將軍制定了一個必勝策略:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得公子們許多賭注假設(shè)田忌的各等級馬與某公子的各等級馬進(jìn)行一場比賽獲勝的概率如表所示:

田忌的馬獲勝概率公子的馬

上等馬

中等馬

下等馬

上等馬

1

中等馬

下等馬

0

比賽規(guī)則規(guī)定:一次比由三場賽馬組成,每場由公子和田忌各出一匹馬出騫,結(jié)果只有勝和負(fù)兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.

如果按孫臏的策略比賽一次,求田忌獲勝的概率;

如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4支足球隊進(jìn)行單循環(huán)比賽(任兩支球隊恰進(jìn)行一場比賽),任兩支球隊之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場次數(shù)作為該隊的成績,成績按從大到小排名次順序,成績相同則名次相同.下列結(jié)論中正確的是(

A.恰有四支球隊并列第一名為不可能事件B.有可能出現(xiàn)恰有三支球隊并列第一名

C.恰有兩支球隊并列第一名的概率為D.只有一支球隊名列第一名的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線的普通方程和曲線的直角坐標(biāo)方程;

2)若射線)與直線和曲線分別交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年某市政府出臺了“2020年創(chuàng)建全國文明城市(簡稱創(chuàng)文)”的具體規(guī)劃,今日,作為“創(chuàng)文”項目之一的“市區(qū)公交站點(diǎn)的重新布局及建設(shè)”基本完成,市有關(guān)部門準(zhǔn)備對項目進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否驗收,調(diào)查人員分別在市區(qū)的各公交站點(diǎn)隨機(jī)抽取若干市民對該項目進(jìn)行評分,并將結(jié)果繪制成如圖所示的頻率分布直方圖,相關(guān)規(guī)則為:①調(diào)查對象為本市市民,被調(diào)查者各自獨(dú)立評分;②采用百分制評分, 內(nèi)認(rèn)定為滿意,80分及以上認(rèn)定為非常滿意;③市民對公交站點(diǎn)布局的滿意率不低于60%即可進(jìn)行驗收;④用樣本的頻率代替概率.

(1)求被調(diào)查者滿意或非常滿意該項目的頻率;

(2)若從該市的全體市民中隨機(jī)抽取3人,試估計恰有2人非常滿意該項目的概率;

(3)已知在評分低于60分的被調(diào)查者中,老年人占,現(xiàn)從評分低于60分的被調(diào)查者中按年齡分層抽取9人以便了解不滿意的原因,并從中選取2人擔(dān)任群眾督察員,記為群眾督查員中老年人的人數(shù),求隨機(jī)變量的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直三棱柱中的底面為等腰直角三角形,,點(diǎn)分別是邊,上動點(diǎn),若直線平面,點(diǎn)為線段的中點(diǎn),則點(diǎn)的軌跡為  

A. 雙曲線的一支一部分 B. 圓弧一部分

C. 線段去掉一個端點(diǎn) D. 拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2012年12月18日,作為全國首批開展空氣質(zhì)量新標(biāo)準(zhǔn)監(jiān)測的74個城市之一,鄭州市正式發(fā)布數(shù)據(jù).資料表明,近幾年來,鄭州市霧霾治理取得了很大成效空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設(shè)有9個監(jiān)測站點(diǎn)監(jiān)測空氣質(zhì)量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2,5,2個監(jiān)測站點(diǎn),以9個站點(diǎn)測得的的平均值為依據(jù)播報我市的空氣質(zhì)量.

(Ⅰ)若某日播報的為118,已知輕度污染區(qū)的平均值為74,中度污染區(qū)的平均值為114,求重度污染區(qū)的平均值;

(Ⅱ)如圖是2018年11月的30天中的分布,11月份僅有一天內(nèi).

組數(shù)

分組

天數(shù)

第一組

3

第二組

4

第三組

4

第四組

6

第五組

5

第六組

4

第七組

3

第八組

1

①鄭州市某中學(xué)利用每周日的時間進(jìn)行社會實踐活動,以公布的為標(biāo)準(zhǔn),如果小于180,則去進(jìn)行社會實踐活動.以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校周日進(jìn)行社會實踐活動的概率;

②在“創(chuàng)建文明城市”活動中,驗收小組把鄭州市的空氣質(zhì)量作為一個評價指標(biāo),從當(dāng)月的空氣質(zhì)量監(jiān)測數(shù)據(jù)中抽取3天的數(shù)據(jù)進(jìn)行評價,設(shè)抽取到不小于180的天數(shù)為,的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

討論的單調(diào)性;

當(dāng)時,若關(guān)于x的不等式恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長為2,,,分別是,,的中點(diǎn),則過且與平行的平面截正方體所得截面的面積為____,和該截面所成角的正弦值為______

查看答案和解析>>

同步練習(xí)冊答案