【題目】已知直三棱柱中的底面為等腰直角三角形,,點分別是邊,上動點,若直線平面,點為線段的中點,則點的軌跡為
A. 雙曲線的一支一部分 B. 圓弧一部分
C. 線段去掉一個端點 D. 拋物線的一部分
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的最大值為,其圖像相鄰的兩條對稱軸之間的距離為,且的圖像關于點對稱,則下列結論正確的是( ).
A.函數(shù)的圖像關于直線對稱
B.當時,函數(shù)的最小值為
C.若,則的值為
D.要得到函數(shù)的圖像,只需要將的圖像向右平移個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年茂名市舉辦“好心杯”少年美術書法作品比賽,某賽區(qū)收到200件參賽作品,為了解作品質量,現(xiàn)從這些作品中隨機抽取12件作品進行試評.成績如下:67,82,78,86,96,81,73,84,76,59,85,93.
(1)求該樣本的中位數(shù)和方差;
(2)若把成績不低于85分(含85分)的作品認為為優(yōu)秀作品,現(xiàn)在從這12件作品中任意抽取3件,求抽到優(yōu)秀作品的件數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在的展開式中,前3項的系數(shù)成等差數(shù)列,
(1)求的值;
(2)求展開式中二項式系數(shù)最大的項及各項系數(shù)和;
(3)求展開式中含的項的系數(shù)及有理項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某調查機構對某校學生做了一個是否同意生“二孩”抽樣調查,該調查機構從該校隨機抽查了100名不同性別的學生,調查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計情況如下表:
同意 | 不同意 | 合計 | |
男生 | a | 5 | |
女生 | 40 | d | |
合計 | 100 |
(1)求 a,d 的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認為是否同意父母生“二孩”與性別有關?請說明理由;
(2)將上述調查所得的頻率視為概率,現(xiàn)在從所有學生中,采用隨機抽樣的方法抽取4 位學生進行長期跟蹤調查,記被抽取的4位學生中持“同意”態(tài)度的人數(shù)為 X,求 X 的分布列及數(shù)學期望.
附:
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖放置的邊長為1的正方形沿軸滾動,點恰好經(jīng)過原點.設頂點的軌跡方程是,則對函數(shù)有下列判斷:①函數(shù)是偶函數(shù);②對任意的,都有;③函數(shù)在區(qū)間上單調遞減;④函數(shù)的值域是;⑤.其中判斷正確的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在2016年8月巴西里約熱內盧舉辦的第31屆奧運會上,乒乓球比賽團體決賽實行五場三勝制,且任何一方獲勝三場比賽即結束.甲、乙兩個代表隊最終進入決賽,根據(jù)雙方排定的出場順序及以往戰(zhàn)績統(tǒng)計分析,甲隊依次派出的五位選手分別戰(zhàn)勝對手的概率如下表:
出場順序 | 1號 | 2號 | 3號 | 4號 | 5號 |
獲勝概率 |
若甲隊橫掃對手獲勝(即3∶0獲勝)的概率是,比賽至少打滿4場的概率為.
(1)求,的值;
(2)求甲隊獲勝場數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某機構用“10分制”調查了各階層人士對某次國際馬拉松賽事的滿意度,現(xiàn)從調查人群中隨機抽取16名,如圖莖葉圖記錄了他們的滿意度分數(shù)以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉:
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若滿意度不低于分,則稱該被調查者的滿意度為“極滿意”,求從這16人中隨機選取3人,至少有2人滿意度是“極滿意”的概率;
(3)以這16人的樣本數(shù)據(jù)來估計整個被調查群體的總體數(shù)據(jù),若從該被調查群體人數(shù)很多任選3人,記表示抽到“極滿意”的人數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),
(1)若,討論函數(shù)的單調性;
(2)若,在定義域內存在,使得,求證:;
(3)記為的反函數(shù),當時,求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com