(本題共兩個小題,每題5分,滿分10分)
① 已知不等式的解集是,求的值;
② 若函數(shù)的定義域為,求實數(shù)的取值范圍.

(1)a=-4,b=-9(2)[0,1]

解析試題分析:解:①依題意知是方程的兩個根,------2分
                    ----------3分
② (Ⅰ)當時,,其定義域為;     ---------2分
(Ⅱ)當時,依題意有 ------2分
綜上所述,實數(shù)的的取值范圍是[0,1]. -----1分
考點:本試題考查了一元二次不等式的解集。
點評:解決該試題的關鍵是確定開口方向,以及判別式的情況,和根的大小,進而結合二次函數(shù)的圖像得到解集。另外,二次不等式的解集是一元二次不等式成立的充要條件,該知識點尤其重要,需要熟練掌握。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)的定義域是,且滿足,,如果對于0<x<y,都有
(1)求;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)
如圖,某小區(qū)有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個游泳池,計劃在地塊OABC內修一條與池邊AE相切的直路(寬度不計),切點為M,并把該地塊分為兩部分.現(xiàn)以點O為坐標原點,以線段OC所在直線為x軸,建立平面直角坐標系,若池邊AE滿足函數(shù))的圖象,且點M到邊OA距離為

(1)當時,求直路所在的直線方程;
(2)當t為何值時,地塊OABC在直路不含泳池那側的面積取到最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)y=f1(x)的圖象以原點為頂點且過點(1,1),反比例函數(shù)y=f2(x)的圖象與直線y=x的兩個交點間距離為8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函數(shù)f(x)的表達式;
(Ⅱ) 證明:當a>3時,關于x的方程f(x)= f(a)有三個實數(shù)解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某服裝廠某年1月份、2月份、3月份分別生產(chǎn)某名牌衣服1萬件、萬件、萬件,為了估測當年每個月的產(chǎn)量,以這三個月的產(chǎn)品數(shù)量為依據(jù),用一個函數(shù)模型模擬該產(chǎn)品的月產(chǎn)量與月份的關系,模擬函數(shù)可選用函數(shù)(其中為常數(shù))或二次函數(shù)。又已知當年4月份該產(chǎn)品的產(chǎn)量為萬件,請問用以上哪個函數(shù)作為模擬函數(shù)較好,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分6分)
(1)計算
(2)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)某民營企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調查和預測,A產(chǎn)品的利潤y與投資額x成正比,其關系如圖1所示;B產(chǎn)品的利潤y與投資額x的算術平方根成正比,其關系如圖2所示(利潤與投資額的單位均為萬元). (1)分別將A、B兩種產(chǎn)品的利潤表示為投資額的函數(shù)關系式;(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)某企業(yè)投入81萬元經(jīng)銷某產(chǎn)品,經(jīng)銷時間共60個月,市場調研表明,該企業(yè)在經(jīng)銷這個產(chǎn)品期間第個月的利潤(單位:萬元),為了獲得更多的利潤,企業(yè)將每月獲得的利潤投入到次月的經(jīng)營中,記第個月的當月利潤率,例如:
(Ⅰ); (Ⅱ)求第個月的當月利潤率
(Ⅲ)該企業(yè)經(jīng)銷此產(chǎn)品期間,哪個月的當月利潤率最大,并求該月的當月利潤率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)設函數(shù)的定義域為,記函數(shù)的最大值為.
(1)求的解析式;(2)已知試求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案