6.將十進制數(shù)217轉(zhuǎn)化為二進制數(shù)11011001(2)

分析 利用“除k取余法”是將十進制數(shù)除以2,然后將商繼續(xù)除以2,直到商為0,然后將依次所得的余數(shù)倒序排列即可得到答案.

解答 解:
所以十進制數(shù)217(10)化為二進制數(shù)是11011001(2)
故答案為:11011001(2)

點評 本題考查的知識點是十進制與其它進制之間的轉(zhuǎn)化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ax-lnax+x2(a>0,a≠1)
(Ⅰ)求函數(shù)f(x)在點(0,f(0))處的切線方程
(Ⅱ)求函數(shù)f(x)單調(diào)遞增區(qū)間
(Ⅲ)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然對數(shù)的底數(shù)),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.復(fù)數(shù)(1+2i)i的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.(a+bi)(a-bi)(-a+bi)(-a-bi)等于(  )
A.(a2+b22B.(a2-b22C.a2+b2D.a2-b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x,x≤0\\ \frac{{\sqrt{x}}}{e^x},x>0\end{array}\right.$,若關(guān)于x的方程f(x)-a+1=0恰有3個不同的實數(shù)根,則實數(shù)a的取值范圍為( 。
A.$(1,\frac{{\sqrt{2e}}}{2e}+1)$B.$(1,\frac{1}{e}+1)$C.$(0,\frac{1}{2e}+1)$D.$(\frac{1}{e},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知總體中各個體的值由小到大依次為2,3,3,7,a,b,12,15,18,20(a,b∈N*),且總體的中位數(shù)為10,若要使該總體的方差最小,則a,b的取值分別是(  )
A.9,11B.10,10C.8,10D.10,11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在正方體ABCD-A1B1C1D1中,AB=3$\sqrt{3}$,點E,F(xiàn)在線段DB1上,且DE=EF=FB1,點M是正方體表面上的一動點,點P,Q是空間兩動點,若$\frac{|PE|}{|PF|}$=$\frac{|QE|}{|QF|}$=2且|PQ|=4,則$\overrightarrow{MP}$•$\overrightarrow{MQ}$的最小值為-$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=$\frac{1}{2}$(x-1)2+a的定義域和值域都是[1,b](b>1),則a+b的值等于(  )
A.-2B.2C.4D.2或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐A-OBCD中,已知平面AOC⊥面OBCD,AO=2$\sqrt{3}$,OB=BC=2,CD=4,∠OBC=∠BCD=120°.
(I)求證:平面ACD⊥平面AOC;
(II)直線AO與平面OBCD所成角為60°,求二面角A-BC-D的平面角的正切值.

查看答案和解析>>

同步練習(xí)冊答案