已知y1=|x2-2x-3|,就a的取值討論f(x)的圖象與y2=a的公共點的情況.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:畫出函數(shù)f(x)=y1=|x2-2x-3|的圖象,結合函數(shù)的圖象可分析出f(x)的圖象與y2=a的公共點的情況.
解答: 解:函數(shù)f(x)=y1=|x2-2x-3|的圖象如下圖所示:

由圖可得:
當a<0時,f(x)的圖象與y2=a的圖象無公共點;
當a=0或a>4時,f(x)的圖象與y2=a的圖象有兩個公共點;
當0<a<4時,f(x)的圖象與y2=a的圖象有四個公共點;
當a=4時,f(x)的圖象與y2=a的圖象有三個公共點;
點評:本題考查的知識點是函數(shù)的圖象和性質(zhì),二次函數(shù)的圖象和性質(zhì),對折變換,其中畫出函數(shù)f(x)=y1=|x2-2x-3|的圖象,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知P(a,b)是直線x+2y-1=0上任一點,求S=
a2+b2+4a-6b+13
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ex-
1
2
x2+mx,x∈(-∞,0]
lnx,x∈(0,+∞)
,g(x)=
1
2
ax2+bx(a≠0)(e為自然對數(shù)的底數(shù)).
(Ⅰ)若函數(shù)f(x)的圖象在x=-1處的切線方程為y=
1
e
x+n,求m,n的值;
(Ⅱ)若a=-2時,函數(shù)h(x)=f(x)-g(x)在(0,+∞)內(nèi)是增函數(shù),求b的取值范圍;
(Ⅲ)當x>0時,設函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于點P、Q,過線段PQ的中點R作x軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),F(xiàn)是它的左焦點,Q是右準線與x軸的交點,點P(0,3)滿足
PF
PQ
=0,N是直線PQ與橢圓的一個公共點,當|PN|:|NQ|=1:8時,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
4
+y2=1經(jīng)過點(1,
3
2
),且一個焦點為(
3
,0).若直線y=k(x-1)(k≠0)與x軸交于點P,與橢圓C交于A、B兩點,線段AB的垂直平分線與x軸交于點Q,求
|AB|
|PQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a>b>0,求a2+
1
b(a-b)
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn為數(shù)列an的前n項和,Sn=λan-1,λ為常數(shù),n=1、2、3…
(1)若a3=
a
2
2
,求λ的值
(2)是否存在實數(shù)λ,使該數(shù)列是等差數(shù)列?若存在,求λ的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足x2+y2=9,求
y+1
x+3
及2x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓臺的母線長為
2
,俯視圖是半徑分別為1和2的同心圓,則其側視圖的面積為
 

查看答案和解析>>

同步練習冊答案