分析 (1)分組分別利用等差數列與等比數列的前n項和公式即可得出;
(2)對a分類討論,分別利用等差數列與等比數列的前n項和公式即可得出.
解答 解:(1)原式=(2+4+…+2n)+($\frac{1}{3}$+$\frac{1}{9}$+…+$\frac{1}{{3}^{n}}$)=$\frac{n(2+2n)}{2}$+$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=n2+n+$\frac{1}{2}(1-\frac{1}{{3}^{n}})$.
(2)當a=0時,原式=-1-2-…-n=$-\frac{n(n+1)}{2}$;
當n=1時,原式=(1-1)+(1-2)+…(1-n)=n$-\frac{n(n+1)}{2}$=$\frac{n-{n}^{2}}{2}$;
當n≠0,1時,原式=(a+a2+…+an)+(-1-2-…-n)=$\frac{a({a}^{n}-1)}{a-1}$-$\frac{n(1+n)}{2}$.
點評 本題考查了等比數列的通項公式及其前n項和公式,考查了分類討論思想方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $1+\sqrt{2}$ | B. | 2 | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}+\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com