【題目】高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過(guò)的最大整數(shù),則稱為高斯函數(shù),例如:,.已知函數(shù),函數(shù),則下列命題中真命題的個(gè)數(shù)是(

圖象關(guān)于對(duì)稱;

是奇函數(shù);

上是增函數(shù);

的值域是.

A.B.C.D.

【答案】B

【解析】

利用特殊值法可判斷①的正誤;利用函數(shù)奇偶性的定義可判斷②的正誤;利用函數(shù)單調(diào)性的定義可判斷③的正誤;求出函數(shù)的值域,可求得函數(shù)的值域,可判斷④的正誤.綜合可得出結(jié)論.

根據(jù)題意知,

,,

,

所以,函數(shù)既不是奇函數(shù)也不是偶函數(shù),不關(guān)于縱軸對(duì)稱,①錯(cuò)誤;

函數(shù)的定義域?yàn)?/span>,所以,函數(shù)是奇函數(shù),②正確;

任取,

,則,

所以, 函數(shù)上是增函數(shù),③正確;

,,則,即,

的值域?yàn)?/span>,④錯(cuò)誤.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求函數(shù)上的最值;

(Ⅱ)若對(duì),總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知扇環(huán)如圖所示,是扇環(huán)邊界上一動(dòng)點(diǎn),且滿足,則的取值范圍為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,斜率為的直線交拋物線兩點(diǎn),已知點(diǎn)的橫坐標(biāo)比點(diǎn)的橫坐標(biāo)大4,直線交線段于點(diǎn),交拋物線于點(diǎn)

1)若點(diǎn)的橫坐標(biāo)等于0,求的值;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

1)求圓的圓心到直線的距離;

2)已知,若直線與圓交于兩點(diǎn),的中點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓的左、右頂點(diǎn)分別為A、B,右焦點(diǎn)為F,且點(diǎn)F滿足,由橢圓C的四個(gè)頂點(diǎn)圍成的四邊形面積為.過(guò)點(diǎn)的直線TA,TB與此橢圓分別交于點(diǎn),,其中,,

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)當(dāng)T在直線時(shí),直線MN是否過(guò)x軸上的一定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年末,武漢出現(xiàn)新型冠狀病毒(肺炎疫情,并快速席卷我國(guó)其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,目前沒(méi)有特異治療方法.防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶上門(mén)排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無(wú)法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,某社區(qū)將本社區(qū)的排查工作人員分為,兩個(gè)小組,排查工作期間社區(qū)隨機(jī)抽取了100戶已排查戶,進(jìn)行了對(duì)排查工作態(tài)度是否滿意的電話調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下的列聯(lián)表.

是否滿意

組別

不滿意

滿意

合計(jì)

16

34

50

2

45

50

合計(jì)

21

79

100

1)分別估計(jì)社區(qū)居民對(duì)組、組兩個(gè)排查組的工作態(tài)度滿意的概率;

2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“對(duì)社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關(guān)?

附表:

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)作圓的切線,已知分別為切點(diǎn),直線恰好經(jīng)過(guò)橢圓的右焦點(diǎn)和下頂點(diǎn),則直線方程為___________;橢圓的標(biāo)準(zhǔn)方程是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面,、、分別是棱、的中點(diǎn),,

1)求異面直線所成的角;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案