<thead id="q0b9q"><dfn id="q0b9q"></dfn></thead><tfoot id="q0b9q"><div id="q0b9q"></div></tfoot>
    如圖,已知圓O的半徑為2,從圓O外一點(diǎn)A引切線AD和割線ABC,圓心O到AC的距離為,AB=3,則切線AD的長為   
    【答案】分析:根據(jù)所給的已知條件,由半徑長、弦心距、半弦長構(gòu)成直角三角形,利用勾股定理求出BC的長,兩條線段相加求出AC長,由切割線定理,得到切線AD的長.
    解答:解:∵圓O的半徑為2,
    圓心O到AC的距離為
    ∴BC=2=2
    又∵AB=3,∴AC=5
    又∵AD為圓O的切線,ABC為圓O的割線
    由切割線定理得:
    AD2=AB•AC=3×5=15
    ∴AD=
    故答案為:
    點(diǎn)評:本題考查弦長公式和切割線定理,考查與圓有關(guān)的比例線段,本題解題的關(guān)鍵是根據(jù)半徑長、弦心距、半弦長構(gòu)成直角三角形,這是圓中常見的一種方法.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    如圖,已知圓O的半徑為2,從圓O外一點(diǎn)A引切線AD和割線ABC,圓心O到AC的距離為
    3
    ,AB=3,則切線AD的長為
    15
    15

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2010年遼寧省東北育才學(xué)校高一下學(xué)期期中考試數(shù)學(xué)試題 題型:解答題

    (本題滿分12分)如圖,已知圓O的半徑為1,點(diǎn)C在直徑AB的延長線上,BC=1,點(diǎn)P是圓O上半圓上的一個(gè)動點(diǎn),以PC為邊作正三角形PCD,且點(diǎn)D
    與圓心分別在PC兩側(cè).
    (1)若,試將四邊形OPDC的面積y表示成的函數(shù);
    (2)求四邊形OPDC面積的最大值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2012-2013年廣東省汕頭市東廈中學(xué)高三(上)第三次質(zhì)檢數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

    如圖,已知圓O的半徑為2,從圓O外一點(diǎn)A引切線AD和割線ABC,圓心O到AC的距離為,AB=3,則切線AD的長為   

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省梅州市梅縣華僑中學(xué)高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

    如圖,已知圓O的半徑為2,從圓O外一點(diǎn)A引切線AD和割線ABC,圓心O到AC的距離為,AB=3,則切線AD的長為   

    查看答案和解析>>

    同步練習(xí)冊答案