若直線l:y+kx+2=0與曲線C:ρ=2cosθ相交,則k的取值范圍是
 
分析:先將原極坐標(biāo)方程ρ=2cosθ兩邊同乘以ρ后化成直角坐標(biāo)方程,再利用直角坐標(biāo)方程進(jìn)行求解.
解答:解:將原極坐標(biāo)方程ρ=2cosθ,化為:
ρ2=2ρcosθ,
化成直角坐標(biāo)方程為:x2+y2-2x=0,
即(x-1)2+y2=1.
則圓心到直線的距離d=
|k+2|
k2+1

由題意得:d<1,即d=
|k+2|
k2+1
<1
解之得:k<-
3
4

故填:k<-
3
4
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、若直線l:y=kx-1與直線x+y-1=0的交點(diǎn)對(duì)稱的直線方程,則實(shí)數(shù)k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線C:x2=2py(p>0)上一點(diǎn)P(m,4)到其焦點(diǎn)的距離為5.
(I)求p與m的值;
(II)若直線l:y=kx-1與拋物線C相交于A、B兩點(diǎn),l1、l2分別是該拋物線在A、B兩點(diǎn)處的切線,M、N分別是l1、l2與該拋物線的準(zhǔn)線交點(diǎn),求證:|
AM
+
BN
|>4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C的漸近線為y=±
3
3
x且過(guò)點(diǎn)M(
6
,1).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+m,(m≠0)與雙曲線C相交于A,B兩點(diǎn),D(0,-1)且有|AD|=|BD|,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線l:y=kx-
3
與直線2x+3y-6=0的交點(diǎn)位于第一象限,則直線l的傾斜角的取值范圍是
(
π
6
,
π
2
)
(
π
6
,
π
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別為F1、F2,右頂點(diǎn)為A,P為橢圓C上任意一點(diǎn).已知
PF1
PF2
的最大值為3,最小值為2.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于M、N兩點(diǎn)(M、N不是左右頂點(diǎn)),且以MN為直徑的圓過(guò)點(diǎn)A.求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案