17.如圖,M、N分別是四面體OABC的棱AB與OC的中點,已知向量$\overrightarrow{MN}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,則xyz=$\frac{1}{8}$.

分析 由題意,$\overrightarrow{MN}$=$\overrightarrow{MB}+\overrightarrow{BC}$+$\overrightarrow{CN}$=$\frac{1}{2}$($\overrightarrow{OB}$-$\overrightarrow{OA}$)+$\overrightarrow{OC}$-$\overrightarrow{OB}$-$\frac{1}{2}$$\overrightarrow{OC}$=-$\frac{1}{2}$$\overrightarrow{OA}$-$\frac{1}{2}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$,求出x,y,z,即可得出結(jié)論.

解答 解:由題意,$\overrightarrow{MN}$=$\overrightarrow{MB}+\overrightarrow{BC}$+$\overrightarrow{CN}$=$\frac{1}{2}$($\overrightarrow{OB}$-$\overrightarrow{OA}$)+$\overrightarrow{OC}$-$\overrightarrow{OB}$-$\frac{1}{2}$$\overrightarrow{OC}$=-$\frac{1}{2}$$\overrightarrow{OA}$-$\frac{1}{2}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$,
∴$x=-\frac{1}{2}$,y=-$\frac{1}{2}$,z=$\frac{1}{2}$,
∴xyz=$\frac{1}{8}$.
故答案為$\frac{1}{8}$.

點評 本題考查空間向量的線性運算,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知角α的終邊與單位圓交于一點P(-$\frac{4}{5}$,$\frac{3}{5}$),求$\frac{sin(-π-α)tan(-3π+α)}{cos(\frac{11}{2}π-α)sin(\frac{π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)z=1-2i,$\overline{z}$是z的共軛復(fù)數(shù),則復(fù)平面內(nèi)復(fù)數(shù)z•$\overline{z}$-i對應(yīng)的點所在象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)Sn是數(shù)列{an}的前n項和,已知a1=3,an+1=2Sn+3.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(2n-1)an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是定義在R上的偶函數(shù),其導(dǎo)函數(shù)為f′(x),若f′(x)<f(x),且f(x+1)=f(3-x),f (2011)=3,則不等式f (x)<3ex-1的解集為( 。
A.(e,+∞)B.(1,+∞)C.(-∞,0)D.(-∞,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)$f(x)={log_2}\frac{{2({1+x})}}{x-1}$,若f(a)=2,則f(-a)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)${({1-2x})^5}={a_0}+2{a_1}x+4{a_2}{x^2}+8{a_3}{x^3}+16{a_4}{x^4}+32{a_5}{x^5}$,則a1+a2+a3+a4+a5=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長是短軸長的$\sqrt{2}$倍,直線y=-x+1與橢圓C相交于A,B兩點,且弦AB的長為$\frac{4\sqrt{5}}{3}$,求此橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$與拋物線y2=8x有一個公共的焦點F,且兩曲線的一個交點為P,若|PF|=4,則雙曲線的離心率為( 。
A.$\sqrt{2}+1$B.$2({\sqrt{2}+1})$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案