16.判斷向量$\overrightarrow{a}與\overrightarrow$否共線:
(1)$\overrightarrow{a}$=-$\frac{3}{2}$$\overrightarrow{e}$,$\overrightarrow$=2$\overrightarrow{e}$(e為非零向量);
(2)$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow$=-3$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$($\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為非零且不共線的向量);
(3)$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$(,$\overrightarrow{{e}_{2}}$為非零且不共線的向量).

分析 根據(jù)平面向量共線定理$\overrightarrow{a}$=λ$\overrightarrow$或$\overrightarrow$=λ$\overrightarrow{a}$,對(duì)題目中的兩個(gè)向量進(jìn)行判斷即可.

解答 解:(1)∵$\overrightarrow{a}$=-$\frac{3}{2}$$\overrightarrow{e}$,$\overrightarrow$=2$\overrightarrow{e}$,
∴$\overrightarrow$=-$\frac{4}{3}$$\overrightarrow{a}$,
∴向量$\overrightarrow{a}與\overrightarrow$共線;
(2)∵$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow$=-3$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,
∴$\overrightarrow$=-3($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$)=-3$\overrightarrow{a}$,
∴向量$\overrightarrow{a}與\overrightarrow$共線;
(3)∵$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,
設(shè)$\overrightarrow$=λ$\overrightarrow{a}$,λ∈R,
則$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$=λ($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$),
解得$\left\{\begin{array}{l}{λ=1}\\{λ=-1}\end{array}\right.$,
∴λ不存在,即向量$\overrightarrow{a}與\overrightarrow$不共線.

點(diǎn)評(píng) 本題考查了平面向量共線定理的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.將一顆骰子(它的六個(gè)面分別標(biāo)有點(diǎn)數(shù)1,2,3,4,5,6)先后拋擲兩次,觀察向上的點(diǎn)數(shù),求:
(1)兩數(shù)之積是6的倍數(shù)的概率;
(2)設(shè)第一次,第二次拋擲向上的點(diǎn)數(shù)分別為x、y,則logx2y=1的概率是多少;
(3)以第一次向上的點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在直線x-y=3的下方區(qū)域的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知一條直線與一個(gè)平面內(nèi)的兩條直線垂直.則該直線與這個(gè)平面的位置關(guān)系為(  )
A.平行B.相交C.在平面內(nèi)D.都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)(x2+4x+3)n=a0+a1x+a2x2+…+a2nx2n(n∈N+
(1)求a1+a2+…+a2n;
(2)設(shè)f(n)=a1,g(n)=n(n+1)•2n,試比較f(n)與g(n)的大小,并證明你的結(jié)論..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=2cosx(cosx+$\sqrt{3}$sinx).
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間和對(duì)稱中心;
(2)若0<α<π,且f($\frac{α}{2}$)=$\frac{1}{3}$,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x2+ax+b,g(x)=lnx,記F(x)=f(x)-g(x),求F(x)在[1,2]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知空間四邊形ABCD,E、H分別是邊AB、AD的中點(diǎn),F(xiàn)、G分別是邊BC、CD上的點(diǎn),且$\frac{CF}{CB}$=$\frac{CG}{CD}$=$\frac{3}{5}$,求證直線EF、GH、AC交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知α+β=7π,則sinα與sinβ的關(guān)系是sinα=sinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)y=x${\;}^{\frac{2}{3}}$的定義域?yàn)閇0,+∞),值域?yàn)閇0,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案