已知函數(shù),

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)若不等式在區(qū)間(0,+上恒成立,求的取值范圍;

(3)求證: 

 

【答案】

(1) 函數(shù)的單調(diào)遞增區(qū)間為

(2) (3)在第二問(wèn)的基礎(chǔ)上,由(2)知,則可以放大得到∴ ,從而得證。

【解析】

試題分析:解:(1)∵

    令,得

故函數(shù)的單調(diào)遞增區(qū)間為   3分

(2)由

則問(wèn)題轉(zhuǎn)化為大于等于的最大值      5分

    6分

當(dāng)在區(qū)間(0,+)內(nèi)變化時(shí),、變化情況如下表:

(0,

,+

+

0

由表知當(dāng)時(shí),函數(shù)有最大值,且最大值為   8分

因此     9分

(3)由(2)知

     10分

   12分

又∵

   14分

考點(diǎn):導(dǎo)數(shù)的運(yùn)用

點(diǎn)評(píng):解決的關(guān)鍵是利用導(dǎo)數(shù)的符號(hào)確定單調(diào)性,以及函數(shù)與不等式的綜合,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省臨沂市高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求函數(shù)的定義域 ;

(2)若函數(shù)的最小值為,求實(shí)數(shù)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年人教版高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)
(1)求f(x)的定義域和值域;
(2)證明函數(shù)在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市奉賢區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)求出函數(shù)f(x)的對(duì)稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x,使得成立,若存在求出x;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的定義域;

(2)判斷函數(shù)的奇偶性,并予以證明;

(3)若,猜想之間的關(guān)系并證明.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市高三入學(xué)測(cè)試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知函數(shù) ,

  (1)求函數(shù)的定義域;(2)證明:是偶函數(shù);

  (3)若,求的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案