已知橢圓的長(zhǎng)軸長(zhǎng)為2a,焦點(diǎn)是F1(-,0)、F2(,0),點(diǎn)F1到直線x=-的距離為,過(guò)點(diǎn)F2且傾斜角為銳角的直線l與橢圓交于A、B兩點(diǎn),使得|F2B|=3|F2A|.
(1)求橢圓的方程;
(2)求直線l的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若拋物線y2=-2px(p>0)上有一點(diǎn)M,其橫坐標(biāo)為-9.它到焦點(diǎn)的距離為10,求拋物線方程和M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,且過(guò),設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,記點(diǎn)P的軌跡為E.
(1)求軌跡E的方程;
(2)設(shè)直線l過(guò)點(diǎn)F2且與軌跡E交于P、Q兩點(diǎn),若無(wú)論直線l繞點(diǎn)F2怎樣轉(zhuǎn)動(dòng),在x軸上總存在定點(diǎn),使恒成立,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知直線相交于A、B兩點(diǎn)。
(1)若橢圓的離心率為,焦距為2,求橢圓的標(biāo)準(zhǔn)方程;
(2)若(其中O為坐標(biāo)原點(diǎn)),當(dāng)橢圓的離率時(shí),求橢圓的長(zhǎng)軸長(zhǎng)的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(18分)已知橢圓C:,在曲線C上是否存在不同兩點(diǎn)A、B關(guān)于直線(m為常數(shù))對(duì)稱?若存在,求出滿足的條件;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知:橢圓的左右焦點(diǎn)為;直線經(jīng)過(guò)交橢圓于兩點(diǎn).
(1)求證:的周長(zhǎng)為定值.
(2)求的面積的最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)設(shè)、分別是橢圓,的左、右焦點(diǎn),是該橢圓上一個(gè)動(dòng)點(diǎn),且,。
、求橢圓的方程;
、求出以點(diǎn)為中點(diǎn)的弦所在的直線方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com