19.(1)已知$\overrightarrow a=({4,2})$,$\overrightarrow b=({6,y})$,且$\overrightarrow a∥\overrightarrow b$,求y.
(2)已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(λ,3),且$\overrightarrow{a}$⊥$\overrightarrow$,求λ

分析 (1)根據(jù)兩向量平行的坐標(biāo)表示,列出方程即可求出y的值;
(2)根據(jù)兩向量垂直的坐標(biāo)表示,列出方程即可求出λ的值.

解答 解:(1)$\overrightarrow a=({4,2})$,$\overrightarrow b=({6,y})$,且$\overrightarrow a∥\overrightarrow b$,
所以4y-2×6=0,
解得y=3;
(2)$\overrightarrow{a}$=(2,1),$\overrightarrow$=(λ,3),且$\overrightarrow{a}$⊥$\overrightarrow$,
所以2λ+1×3=0,
解得λ=-$\frac{3}{2}$.

點(diǎn)評 本題考查了兩向量平行和垂直的坐標(biāo)表示問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.構(gòu)造一個同時(shí)滿足下面三個條件的函數(shù)實(shí)例:y=-|x|(寫解析式).
①函數(shù)在(-∞,0)上單調(diào)遞增;  
②函數(shù)具有奇偶性;  
③函數(shù)有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\sqrt{\frac{x}{2-x}}$,則函數(shù)$g(x)=f(x+\frac{1}{2})+f(x-\frac{1}{2})$的定義域是[$\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線一條漸近線的斜率為$\sqrt{3}$,焦點(diǎn)是(-4,0)、(4,0),則雙曲線方程為( 。
A.$\frac{x^2}{12}-\frac{y^2}{4}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=1$C.$\frac{x^2}{10}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{10}=1$1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)求垂直于直線x+3y-5=0,且過點(diǎn)P(-1,0)的直線的方程.
(2)求平行于直線3x+4y-12=0,且與它的距離是7的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將石子擺成如圖的梯形形狀,稱數(shù)列5,9,14,20,…為梯形數(shù),根據(jù)圖形的構(gòu)成,此數(shù)列的第20項(xiàng)與5的差即a20-5=( 。
A.252B.263C.258D.247

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.直線ax-y+1=0與連結(jié)A(2,3),B(3,2)的線段相交,則a的取值范圍是$[\frac{1}{3},1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知下面四個命題:
①“若x2-x=0,則x=0或x=l”的逆否命題為“若x≠0且x≠1,則x2-x≠0”
②“x<1”是“x2-3x+2>0”的充分不必要條件
③命題P:存在x0∈R,使得x02+x0十1<0,則?p:任意x∈R,都有x2+x+1≥0
④若P且q為假命題,則p,q均為假命題
其中真命題個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=-\frac{2}{x+1},x∈[0,2]$,證明函數(shù)的單調(diào)性,并求函數(shù)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案