1.已知函數(shù)f(x)=x2+2x+2a-a2
(1)當(dāng)a=$\frac{1}{2}$時(shí),求不等式f(x)>0的解集;
(2)若對(duì)于任意x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)把a(bǔ)值代入,利用二次函數(shù)求解即可;
(2)求出二次函數(shù)對(duì)稱(chēng)軸x=-1,知函數(shù)f(x)在(-1,+∞)上遞增,只需函數(shù)的最小值f(1)大于零即可.

解答 解:(1)當(dāng)a=$\frac{1}{2}$時(shí),
f(x)=x2+2x+$\frac{3}{4}$>0,
∴x>-$\frac{1}{2}$或x<-$\frac{3}{2}$,
∴解集為(-∞,-$\frac{3}{2}$)∪(-$\frac{1}{2}$,+∞);
(2)f(x)=x2+2x+2a-a2,
對(duì)稱(chēng)軸為x=-1,
∴函數(shù)f(x)在(-1,+∞)上遞增,
任意x∈[1,+∞),f(x)>0恒成立,
∴f(1)>0,
∴-1<a<3.

點(diǎn)評(píng) 考查了二次不等式求解和二次函數(shù)最值問(wèn)題.屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知f(x)=sin(π+$\frac{x}{2}$)cos(3$π-\frac{x}{2}$)-$\frac{\sqrt{3}}{2}$cosx-1,x∈R,求該函數(shù)的最小正周期,最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求以圓x2+y2-4x-8=0的圓心為右焦點(diǎn),長(zhǎng)軸長(zhǎng)為8的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.y=sinx-cos(π-x)的最小值是-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知數(shù)列{an}的首項(xiàng)為15,滿足$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n}+2n}{{a}_{n+1}-2n}$,an+an+1≠0,且$\frac{{a}_{n}}{n}$>λ2-3λ恒成立,則實(shí)數(shù)λ的取值范圍為(  )
A.-2<λ<3B.λ≤-2或λ≥3C.-$\frac{3}{2}$<λ<$\frac{9}{2}$D.λ≤-$\frac{3}{2}$或λ≥$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知O是坐標(biāo)原點(diǎn),實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y-1≤0}\\{x+y-3≤0}\\{x≥1}\end{array}\right.$且點(diǎn)A,B的坐標(biāo)分別為(1,y),(2,$\frac{1}{x}$),則z=$\overrightarrow{OA}$$•\overrightarrow{OB}$的取值范圍為[5,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.將函數(shù)f(x)=2sin(3x+φ)(-π<φ<π)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變)得到函數(shù)g(x)的圖象,且對(duì)任意的x∈R有g(shù)(x)+g($\frac{π}{4}$)≥0,則g(x)的單調(diào)遞增區(qū)間為( 。
A.[$\frac{kπ}{3}$+$\frac{π}{4}$,$\frac{kπ}{3}$+$\frac{5π}{12}$],k∈ZB.[$\frac{kπ}{3}$+$\frac{π}{12}$,$\frac{kπ}{3}$+$\frac{π}{4}$],k∈Z
C.[$\frac{4kπ}{3}$+$\frac{π}{4}$,$\frac{4kπ}{3}$+$\frac{11π}{12}$],k∈ZD.[$\frac{4kπ}{3}$-$\frac{5π}{12}$,$\frac{4kπ}{3}$+$\frac{π}{4}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=-\frac{1}{2}a{x^2}+(1+a)x-lnx(a∈R)$.
(Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)a=0時(shí),設(shè)函數(shù)g(x)=xf(x)-k(x+2)+2.若函數(shù)g(x)在區(qū)間$[\frac{1}{2},+∞)$上有兩個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.f(x)=$\frac{2x+1}{x-a}$在區(qū)間(1,+∞)上為減函數(shù),則實(shí)數(shù)a的取值范圍是($-\frac{1}{2}$,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案