15.設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0)的最小正周期為π,則“f(-x)=f(x)”是“φ=$\frac{π}{4}$”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

分析 函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)=$\sqrt{2}$sin(ωx+φ+$\frac{π}{4}$)(ω>0)的最小正周期為π,可得$\frac{2π}{ω}$=π,解得ω.利用“f(-x)=f(x)”,解得φ=kπ+$\frac{π}{4}$,k∈Z.即可判斷出結(jié)論.

解答 解:函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)=$\sqrt{2}$sin(ωx+φ+$\frac{π}{4}$)(ω>0)的最小正周期為π,
∴$\frac{2π}{ω}$=π,解得ω=2.
∴f(x)=$\sqrt{2}$sin(2x+φ+$\frac{π}{4}$),
若“f(-x)=f(x)”,則φ+$\frac{π}{4}$=$kπ+\frac{π}{2}$,解得φ=kπ+$\frac{π}{4}$,k∈Z.
∴“f(-x)=f(x)”是“φ=$\frac{π}{4}$”的必要不充分條件.
故選:B.

點評 本題考查了三角函數(shù)的圖象與性質(zhì)、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C的對邊分別為a,b,c且$\frac{a}$cosC+$\frac{c}{a}$cosB=3cosB.
(1)求sinB;
(2)若D為AC邊的中點,且BD=1,求△ABD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{{2}^{x}-\frac{1}{2}}$+$\frac{3}{x+1}$的定義域為{x|x>-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義域為[a,b]的函數(shù)y=f(x)圖象的兩個端點為A、B,向量$\overrightarrow{ON}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$,M(x,y)是f(x)圖象上任意一點,其中x=λa+(1-λ)b,λ∈[0,1]=.若不等式|MN|≤k恒成立,則稱函數(shù)f(x)在[a,b]上滿足“k范圍線性近似”,其中最小的正實數(shù)k稱為該函數(shù)的線性近似閥值.則定義在[1,2]上的函數(shù)y=sin$\frac{πx}{3}$與y=x-$\frac{1}{x}$的線性近似閥值分別是( 。
A.1-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$-$\sqrt{2}$B.1+$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$+$\sqrt{2}$C.1-$\sqrt{2}$,1+$\sqrt{2}$D.2-$\sqrt{2}$,2+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某市為了解各!秶鴮W(xué)》課程的教學(xué)效果,組織全市各學(xué)校高二年級全體學(xué)生參加了國學(xué)知識水平測試,測試成績從高到低依次分為A、B、C、D四個等級,隨機調(diào)閱了甲、乙兩所學(xué)校各60名學(xué)生的成績,得到如圖所示分布圖:

(Ⅰ)試確定圖中實數(shù)a與b的值;
(Ⅱ)規(guī)定等級D為“不合格”,其他等級為“合格”,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若從甲、乙兩!昂细瘛钡膶W(xué)生中各選1名學(xué)生,求甲校學(xué)生成績高于乙校學(xué)生成績的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$f(x)=\frac{sinx}{|sinx|}+\frac{2cosx}{|cosx|}+\frac{3tanx}{|tanx|}$的值域為A,則集合A的子集個數(shù)為(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若正方體A1A2A3A4-B1B2B3B4的棱長為1,則集合{x|x=$\overrightarrow{{A}_{1}{B}_{1}}$•$\overrightarrow{{A}_{i}{B}_{j}}$,i∈{1,2,3,4},j∈1,2,3,4}}中元素的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等比數(shù)列{an}滿足a1+a2=6,a4+a5=48,則數(shù)列{an}前10項的和為S10=(  )
A.1022B.1023C.2046D.2047

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知復(fù)數(shù)z滿足$\frac{1+i}{1-i}$•z=3+4i,則|z|=( 。
A.2$\sqrt{6}$B.$\sqrt{7}$C.5$\sqrt{2}$D.5

查看答案和解析>>

同步練習(xí)冊答案