用誘導公式求下列三角函數(shù)值.
(1)cos
65
6
π;
(2)sin(-
31
4
π);
(3)tan(-
26π
3
考點:運用誘導公式化簡求值
專題:計算題,三角函數(shù)的求值
分析:運用誘導公式逐一化簡即可求值.
解答: 解:(1)cos
65
6
π=cos(10π+
6
)=cos
6
=-cos
π
6
=-
3
2
;
(2)sin(-
31
4
π)=-sin
31π
4
=-sin(8π-
π
4
)=sin
π
4
=
2
2
;
(3)tan(-
26π
3
)=-tan(8π+
3
)=tan
π
3
=
3
點評:本題主要考察了誘導公式化簡求值,屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知tan(π-α)=
5
12
,α∈(
2
,2π),則cos(α+
π
2
)=( 。
A、
5
13
B、-
5
13
C、-
12
13
D、
12
13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

底面直徑和高都是2cm的圓柱的側面面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是雙曲線
x2
4
-y2=1上一點,F(xiàn)1、F2是雙曲線的焦點,若|PF1|等于1,則|PF2|等于( 。
A、5B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥底面ABC,AC⊥BC,H為PC的中點,M為AH中點,PA=AC=2,BC=1.
(1)求證:AH⊥平面PBC;
(2)求PM與平面AHB成角的正弦值;
(3)在線段PB上是否存在點N,使得MN∥平面ABC,若存在,請說明點N的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},an=-2n2+λn,若該數(shù)列是遞減數(shù)列,則實數(shù)λ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四面體有5條棱長為2,一條棱長為1,求它的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我國發(fā)射的第一顆人造地衛(wèi)星的運行軌道是以地心為一個焦點的橢圓,設地球的半徑為R,衛(wèi)星近地點,遠地點離地面距離分別為m,n.求衛(wèi)星軌道的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正實數(shù)x,y滿足
2
x
+
1
y
=1,若m=x+y,則實數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習冊答案