已知?jiǎng)印袽經(jīng)過點(diǎn)D(-2,0),且與圓C:x2+y2-4x=0外切.
(1)求點(diǎn)M的軌跡方程;
(2)記半徑最小的圓為⊙M,直線l與⊙M相交于A,B兩點(diǎn),且⊙M上存在點(diǎn)P,使得(λ≠0)
①求⊙M的方程;
②求直線l的方程及相應(yīng)的點(diǎn)P坐標(biāo).
【答案】分析:(1)利用兩圓相外切的條件,結(jié)合雙曲線的定義,求出雙曲線的方程.
(2)①M(fèi)D的最小值為c-a=1,且M(-1,0)寫出方程.
②先求出點(diǎn)P坐標(biāo)表達(dá)式,代入⊙M方程,求出點(diǎn)P的坐標(biāo),判斷MAPB是菱形,求出AB斜率,及MP的中點(diǎn),點(diǎn)斜式寫出直線l的方程.
解答:解:(1)圓C半徑R=2,圓心C(2,0),(1分)由題意可得,MC=MD+2,MC-MD=2<CD=4,(3分)
∴點(diǎn)M的軌跡是以C,D為焦點(diǎn)的雙曲線的左支,其中2a=2,2c=4,∴a=1,c=2,∴b2=3.(5分)
∴點(diǎn)M的軌跡方程為 .(6分)
(2)①∵M(jìn)D的最小值為c-a=1,且M(-1,0),∴⊙M的方程為(x+1)2+y2=1.(8分)
②由,把點(diǎn)P(λ,3λ)代入⊙M:(x+1)2+y2=1,
解得,(10分)∴,且.(12分)
,且,∴MAPB是菱形. (13分)
,∴
又MP的中點(diǎn)為,∴直線,
.(15分)
點(diǎn)評(píng):本題考查軌跡方程的求法,直線和圓位置關(guān)系的綜合應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)印袽經(jīng)過點(diǎn)D(-2,0),且與圓C:x2+y2-4x=0外切.
(1)求點(diǎn)M的軌跡方程;
(2)記半徑最小的圓為⊙M0,直線l與⊙M0相交于A,B兩點(diǎn),且⊙M0上存在點(diǎn)P,使得
M0P
=
M0A
+
M0B
=(λ+1,3λ)
(λ≠0)
①求⊙M0的方程;
②求直線l的方程及相應(yīng)的點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過點(diǎn)A(1,2)、B(3,0),并且直線m:2x-3y=0平分圓C.
(1)求圓C的方程;
(2)過點(diǎn)D(0,3),且斜率為k的直線l與圓C有兩個(gè)不同的交點(diǎn)E、F,若|EF|≥2
3
,求k的取值范圍;
(3)若圓C關(guān)于點(diǎn)(
3
2
,1)
對(duì)稱的曲線為圓Q,設(shè)M(x1,y1)、P(x2,y2)(x1≠±x2)是圓Q上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為M1,點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問m•n是否為定值?若是求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C經(jīng)過點(diǎn)M(1,
32
),兩個(gè)焦點(diǎn)是F1(-1,0)和F2(1,0)
(I)求橢圓C的方程;
(II)若A、B為橢圓C的左、右頂點(diǎn),P是橢圓C上異于A、B的動(dòng)點(diǎn),直線AP 與橢圓在點(diǎn)B處的切線交于點(diǎn)D,當(dāng)直線AP繞點(diǎn)A轉(zhuǎn)動(dòng)時(shí),求證:以BD為直徑的圓與直線的圓與直線PF2相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)印袽經(jīng)過點(diǎn)D(-2,0),且與圓C:x2+y2-4x=0外切.
(1)求點(diǎn)M的軌跡方程;
(2)記半徑最小的圓為⊙M0,直線l與⊙M0相交于A,B兩點(diǎn),且⊙M0上存在點(diǎn)P,使得數(shù)學(xué)公式(λ≠0)
①求⊙M0的方程;
②求直線l的方程及相應(yīng)的點(diǎn)P坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案