函數(shù)y=f(x)(x≠0)是奇函數(shù),且當(dāng)x∈R+時(shí)是增函數(shù),若f(1)=0,則不等式f[x(x-
1
2
)]
<0的解集為
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)為奇函數(shù)求出f(-1)=0,再將不等式 f[x(x-
1
2
)]<0分成兩類加以討論,再分別利用函數(shù)的單調(diào)性進(jìn)行求解,可以得出相應(yīng)的解集再求并即可.
解答: 解:∵f(x)為奇函數(shù),且在(0,+∞)上是增函數(shù),f(1)=0,
∴f(-1)=-f(1)=0,且函數(shù)f(x)在(-∞,0)內(nèi)是增函數(shù).
∴f[x(x-
1
2
)]<0?當(dāng)x(x-
1
2
)>0時(shí),f[x(x-
1
2
)]<0=f(1)或
當(dāng)x(x-
1
2
)<0時(shí),f[x(x-
1
2
)]<0=f(-1)
根據(jù)f(x)在(-∞,0)和(0,+∞)內(nèi)是都是增函數(shù),
得到:0<x(x-
1
2
)<1或x(x-
1
2
)<-1⇒
1
2
<x<
1+
17
4
1-
17
4
<x<0
或x∈Φ
故答案為:{x|
1
2
<x<
1+
17
4
1-
17
4
<x<0
}
點(diǎn)評(píng):本題主要考查了函數(shù)的奇偶性的性質(zhì),以及函數(shù)單調(diào)性的應(yīng)用等有關(guān)知識(shí),屬于基礎(chǔ)題.結(jié)合函數(shù)的草圖,會(huì)對(duì)此題有更深刻的理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,2
3
sinx),
b
=(2cosx,sinx),設(shè)f(x)=
a
b
-
3

(1)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(2)若0<θ
π
2
,且y=f(x+θ)為偶函數(shù),求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a、b滿足a+3=b(a-1),則ab的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>2,則a+
1
a-2
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若點(diǎn)P為直線ρcosθ-ρsinθ-4=0上一點(diǎn),點(diǎn)Q為曲線
x=t
y=
1
4
t2
(t
為參數(shù))上一點(diǎn),則|PQ|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
已知直線l的參數(shù)方程為
x=4-
2
2
t
y=
2
2
t
(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=1,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作曲線C的切線,切點(diǎn)為Q,則|PQ|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中與A1B是異面直線的棱有
 
條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式ax2+bx+2>0的解集為{x|-
1
2
<x<
1
3
},則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,則函數(shù)f(x)=max{sinx,cosx,
sinx+cosx
2
}
的最大值與最小值的和等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案