某工廠在試驗階段大量生產(chǎn)一種零件,這種零件有A、B兩項技術(shù)指標需要檢測,設(shè)各項技術(shù)指標達標與否互不影響.若有且僅有一項技術(shù)指標達標的概率為
5
12
,至少一項技術(shù)指標達標的概率為
11
12
.按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標都達標的零件為合格品.
(Ⅰ)求一個零件經(jīng)過檢測為合格品的概率是多少?
(Ⅱ)任意依次抽取該種零件4個,設(shè)ξ表示其中合格品的個數(shù),求ξ的分布列及數(shù)學期望Eξ.
分析:(Ⅰ)設(shè)A、B兩項技術(shù)指標達標的概率分別為P1、P2,由題意得
P1(1-P2)+(1-P1)P2=
5
12
1-(1-P1)(1-P2)= 
11
12
,求得P1和 P2 的值,再根據(jù)P=P1•P2,求得結(jié)果.
(Ⅱ)依題意知ξ~B(4,
1
2
),可得分布列和Eξ的值.
解答:解:(Ⅰ)設(shè)A、B兩項技術(shù)指標達標的概率分別為P1、P2,
由題意,得
P1(1-P2)+(1-P1)P2=
5
12
1-(1-P1)(1-P2)= 
11
12
,解得P1=
3
4
,P2=
2
3
,或 P1=
2
3
,P2=
3
4

∴P=P1•P2=
1
2
,即,一個零件經(jīng)過檢測為合格品的概率為
1
2

(Ⅱ)依題意知ξ~B(4,
1
2
),
分布列為P(ξ=k)=C4k(
1
2
)4-k(
1
2
)k
,其中k=0,1,2,3,4,Eξ=4×
1
2
=2.
點評:本題主要考查離散型隨機變量的分布列與數(shù)學期望,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某工廠在試驗階段大量生產(chǎn)一種零件,這種零件有A,B兩項技術(shù)指標需要檢測,設(shè)各項技術(shù)指標達標與否互不影響.若A項技術(shù)指標達標的概率為
3
4
,有且僅有一項指標達標的概率為
5
12
.按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標都達標的零件為合格品,則一個零件經(jīng)過檢測為合格品的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠在試驗階段大量生產(chǎn)一種零件.這種零件有A、B兩項技術(shù)指標需要檢測,設(shè)各項技術(shù)指標達標與否互不影響.若有且僅有一項技術(shù)指標達標的概率為
5
12
,至少一項技術(shù)指標達標的概率為
11
12
.按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標都達標的零件為合格品.
(1)求一個零件經(jīng)過檢測為合格品的概率是多少?
(2)任意依次抽出5個零件進行檢測,求其中至多3個零件是合格品的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠在試驗階段大量生產(chǎn)一種零件,這種零件有A、B兩項技術(shù)指標需要檢測,設(shè)各項技術(shù)指標達標與否互不影響,若有且僅有一項技術(shù)指標達標的概率為
5
12
,至少一項技術(shù)指標達標的概率為
11
12
,按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標都達標的零件為合格品.
(1)求一個零件經(jīng)守檢測為合格品的概率是多少?
(2)任意依次抽出5個零件進行檢測,求其中至多3個零件是合格品的概率是多少?
(3)任意依次抽取該種零件4個,設(shè)ξ表示其中合格品的個數(shù),求Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠在試驗階段大量生產(chǎn)一種零件.這種零件有A,B兩項技術(shù)指標需要檢測,設(shè)各項技術(shù)指標達標與否互不影響.若有且僅有一項技術(shù)指標達標的概率為
5
12
,至少一項技術(shù)指標達標的概率為
11
12
.按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標都達標的零件為合格品.
(1)求一個零件經(jīng)過檢測為合格品的概率是多少?
(2)任意依次抽出5個零件進行檢測,求其中至多3個零件是合格品的概率是多少?
(3)任意依次抽取該種零件4個,設(shè)ξ表示其中合格品的個數(shù),求Eξ與Dξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•梅州一模)某工廠在試驗階段大量生產(chǎn)一種零件,這種零件有甲、乙兩項技術(shù)指標需要檢測,設(shè)各項技術(shù)指標達標與否互不影響,按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標都達標的零件為合格品,為估計各項技術(shù)的達標概率,現(xiàn)從中抽取1000個零件進行檢驗,發(fā)現(xiàn)兩項技術(shù)指標都達標的有600個,而甲項技術(shù)指標不達標的有250個.
(1)求一個零件經(jīng)過檢測不為合格品的概率及乙項技術(shù)指標達標的概率;
(2)任意抽取該零件3個,求至少有一個合格品的概率;
(3)任意抽取該種零件4個,設(shè)ξ表示其中合格品的個數(shù),求隨機變量ξ的分布列.

查看答案和解析>>

同步練習冊答案