已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,則f(1)和f(-10)的大小關(guān)系為( 。
A、f(1)>f(-10)
B、f(1)<f(-10)
C、f(1)=f(-10)
D、f(1)與f(-10)的大小關(guān)系不確定
考點:二次函數(shù)的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由偶函數(shù)的性質(zhì)可得f(-10)=f(10),借助函數(shù)的單調(diào)性可得f(1)與f(-10)的大小關(guān)系.
解答: 解:∵f(x)為偶函數(shù),∴f(-10)=f(10),
又f(x)在[0,+∞)上單調(diào)遞減,0<1<10,
∴f(1)>f(10),即f(1)>f(-10),
故選A.
點評:該題考查函數(shù)的單調(diào)性、奇偶性及其綜合運用,屬基礎(chǔ)題,利用函數(shù)的性質(zhì)把問題轉(zhuǎn)化到已知區(qū)間上解決是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知全集U=R,A={x|-3<x≤6,x∈R},B={x|x2-5x-6<0,x∈R}.求:
(1)集合B;
(2)(∁A)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a為實數(shù),函數(shù)f(x)=
1
3
x3-
1
2
x2
-2x+a.
(Ⅰ)求f(x)的極值;
(Ⅱ) 若方程f(x)=0僅有一個實數(shù)解,試求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的通項公式為an=n2•cos
2nπ
3
(n∈N*)
,其前n項和為Sn
(Ⅰ)求a3n-2+a3n-1+a3n及S3n的表達式;
(Ⅱ)若bn=
S3n
n•2n-1
,求數(shù)列{bn}的前n項和Tn;
(Ⅲ)若cn=
1
4
S
2
3n+1
-1
,令f(n)=c1+c2+…+cn,求f(n)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+2x+sinx(x∈R),f(x1)+f(x2)>0,則下列不等式正確的是( 。
A、x1>x2
B、x1<x2
C、x1+x2<0
D、x1+x2>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

實數(shù)m=
1
2
是“兩條直線(m+2)x+3my+1=0與(m-2)x+(m+2)y=0相互垂直”的( 。
A、充分必要條件
B、充分而不必要條件
C、必要而不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓Q的半徑是5,圓心Q與點P (-2,6 ) 關(guān)于直線l:3x-4y+5=0 對稱,求圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2x-3x的零點所在的一個區(qū)間是(  )
A、(-2,-1)
B、(-1,0)
C、(1,2)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

α≠
π
2
是sinα≠1的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習冊答案