如圖,橢圓E:=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=.過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為8.

(Ⅰ)求橢圓E的方程.

(Ⅱ)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相較于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:南通高考密卷·數(shù)學(xué)(理) 題型:044

如圖,橢圓方程為=1(a>b>0),A,P,F(xiàn)分別為左頂點(diǎn),上頂點(diǎn),右焦點(diǎn),E為x軸正方向上的一點(diǎn),且||,||,||成等比數(shù)列.又點(diǎn)N滿足(),PF的延長(zhǎng)線與橢圓的交點(diǎn)為Q,過Q與x軸平行的直線與PN的延長(zhǎng)線交于M,

(1)求證:;

(2)若=2,且||=,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(06年浙江卷文)(14分)

如圖,橢圓=1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,

且橢圓的離心率e=.

 (Ⅰ)求橢圓方程;

(Ⅱ)設(shè)F、F分別為橢圓的左、右焦點(diǎn),求證: 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高二上學(xué)期期末測(cè)試數(shù)學(xué)試卷 題型:解答題

(本小題滿分15分)如圖,已知橢圓:+=1(a>b>0)的長(zhǎng)軸AB長(zhǎng)為4,離心率e=,O為坐標(biāo)原點(diǎn),過B的直線l與x軸垂直.P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q使得HP=PQ,連結(jié)AQ延長(zhǎng)交直線于點(diǎn)M,N為的中點(diǎn).

(1)求橢圓的方程;

(2)證明:Q點(diǎn)在以為直徑的圓上;

(3)試判斷直線QN與圓的位置關(guān)系.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓E=1(a>b>0)的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且過點(diǎn)C(2,1),點(diǎn)C關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為D.

(1)求橢圓E的方程;

(2)點(diǎn)P在橢圓E上,直線CPDP的斜率都存在且不為0,試問直線CPDP的斜率之積是否為定值?若是,求此定值;若不是,請(qǐng)說明理由;

(3)平行于CD的直線l交橢圓EM、N兩點(diǎn),求△CMN面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案