精英家教網 > 高中數學 > 題目詳情
(理科)有共同底邊的等邊三角形所在平面互相垂直,則異面直線所成角的余弦值為                            (  )
A         B         C          D
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

.如圖,在四面體ABCD中,截面AEF經過四面體的內切球(與四個面都相切的球)球心O,且與BC,DC分別截于E、F,如果截面將四面體分成體積相等的兩部分,設四棱錐A-BEFD與三棱錐A-EFC的表面積分別是S1,S2,則S1:S2=_____  .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖, 在四面體ABOC中, , 且.

(Ⅰ)設為的中點, 證明: 在上存在一點,使,并計算;
(Ⅱ)求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

(本小題滿分12分)
如圖,在四棱錐P-ABCD中,則面PAD⊥底面ABCD,側棱PA=PD,底面ABCD為直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,OAD中點.
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PBCD所成角的大;
(Ⅲ)線段AD上是否存在點Q,使得它到平面PCD的距離為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

..(本小題滿分12分)如圖,在正方體中,
、分別為棱、的中點.
(1)求證:∥平面;
(2)求證:平面⊥平面;
(3)如果,一個動點從點出發(fā)在正方體的
表面上依次經過棱、、、上的點,最終又回到點,指出整個路線長度的最小值并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)如圖4,四棱錐P—ABCD中,底面ABCD是直角梯形,AB//CD,,AB=AD=2CD,側面底面ABCD,且為等腰直角三角形,,M為AP的中點。

(1)求證:
(2)求證:DM//平面PCB。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在正方體ABCDA1B1C1D1的側面AB1內有一動點P到直線A1B1與直線BC的距離相等,則動點P所在曲線的形狀為(      )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.如圖1,直角梯形ABCD中,,E,F分別為邊AD和BC上的點,且EF//AB,AD=2AE=2AB=4FC=4將四邊形EFCD沿EF折起(如圖2),使AD=AE.
(Ⅰ)求證:BC//平面DAE;
(Ⅱ)求四棱錐D—AEFB的體積;
(Ⅲ)求面CBD與面DAE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在棱長為1的正方體ABCD-A1B1C1D1中,M 為BB1的中點,則點D到直線A1M的距離為            
A.B.C.D.

查看答案和解析>>

同步練習冊答案