18.如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.
(Ⅰ)設點M為棱PD中點,求證:EM∥平面ABCD;
(Ⅱ)線段PD上是否存在一點N,使得直線BN與平面PCD所成角的正弦值等于$\frac{2}{5}$?若存在,試確定點N的位置;若不存在,請說明理由.

分析 (I)證明BP⊥平面ABCD,以B為原點建立坐標系,則$\overrightarrow{BP}$為平面ABCD的法向量,求出$\overrightarrow{BP}$,$\overrightarrow{EM}$的坐標,通過計算$\overrightarrow{EM}•\overrightarrow{BP}$=0得出$\overrightarrow{EM}⊥\overrightarrow{BP}$,從而有EM∥平面ABCD;
(II)假設存在點N符合條件,設$\overrightarrow{PN}=λ\overrightarrow{PD}$,求出$\overrightarrow{BN}$和平面PCD的法向量$\overrightarrow{n}$的坐標,令|cos<$\overrightarrow{BN},\overrightarrow{n}$>|=$\frac{2}{5}$解出λ,根據(jù)λ的值得出結(jié)論.

解答 證明:(Ⅰ)∵平面ABCD⊥平面ABEP,平面ABCD∩平面ABEP=AB,BP⊥AB,
∴BP⊥平面ABCD,又AB⊥BC,
∴直線BA,BP,BC兩兩垂直,
以B為原點,分別以BA,BP,BC為x軸,y軸,z軸建立如圖所示的空間直角坐標系.
則P(0,2,0),B(0,0,0),D(2,0,1),E(2,1,0),C(0,0,1),∴M(1,1,$\frac{1}{2}$),
∴$\overrightarrow{EM}$=(-1,0,$\frac{1}{2}$),$\overrightarrow{BP}$=(0,2,0).
∵BP⊥平面ABCD,∴$\overrightarrow{BP}$為平面ABCD的一個法向量,
∵$\overrightarrow{EM}•\overrightarrow{BP}$=-1×0+0×2+$\frac{1}{2}×0$=0,
∴$\overrightarrow{EM}$⊥$\overrightarrow{BP}$.又EM?平面ABCD,
∴EM∥平面ABCD.
(Ⅱ)解:當點N與點D重合時,直線BN與平面PCD所成角的正弦值為$\frac{2}{5}$.
理由如下:
∵$\overrightarrow{PD}$=(2,-2,1),$\overrightarrow{CD}$=(2,0,0),
設平面PCD的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CD}=0}\\{\overrightarrow{n}•\overrightarrow{PD}=0}\end{array}\right.$.
∴$\left\{\begin{array}{l}{2x=0}\\{2x-2y+z=0}\end{array}\right.$.令y=1,得$\overrightarrow{n}$=(0,1,2).
假設線段PD上存在一點N,使得直線BN與平面PCD所成角α的正弦值等于$\frac{2}{5}$.
設$\overrightarrow{PN}$=λ$\overrightarrow{PD}$=(2λ,-2λ,λ)(0≤λ≤1),∴$\overrightarrow{BN}$=$\overrightarrow{BP}+\overrightarrow{PN}$=(2λ,2-2λ,λ).
∴cos<$\overrightarrow{BN},\overrightarrow{n}$>=$\frac{\overrightarrow{BN}•\overrightarrow{n}}{|\overrightarrow{BN}||\overrightarrow{n}|}$=$\frac{2}{\sqrt{5}\sqrt{9{λ}^{2}-8λ+4}}$=$\frac{2}{5}$.
∴9λ2-8λ-1=0,解得λ=1或$λ=-\frac{1}{9}$(舍去).
∴當N點與D點重合時,直線BN與平面PCD所成角的正弦值等于$\frac{2}{5}$.

點評 本題考查了線面平行的判斷,空間向量的應用與線面角的計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.在△ABC中,角A,B,C所對的邊分別是a,b,c,sin2B=sinAsinC,且c=2a,則cosB的值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.求函數(shù)y=$\frac{sinx-1}{cosx+\sqrt{2}-1}$的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.不等式x(x-2)≤0的解集是( 。
A.[0,2)B.(-∞,0)∪(2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知點A,B的坐標為(-1,0),(1,0),直線AM,BM相交于點M,且直線AM的斜率與直線BM的斜率的差是-2.
(1)求點M的軌跡方程E;
(2)曲線E上有兩個不同的動點P,Q,且AP⊥PQ,求點Q的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,連接橢圓C的四個頂點所形成的四邊形面積為4$\sqrt{3}$.
(1)求橢圓C的標準方程;
(2)如圖,過橢圓C的下頂點A作兩條互相垂直的直線,分別交橢圓C于點M,N,設直線AM的斜率為k,直線l:y=$\frac{{k}^{2}-1}{k}$x分別與直線AM,AN交于點P,Q,記△AMN,△APQ的面積分別為S1,S2,是否存在直線l,使得$\frac{{S}_{1}}{{S}_{2}}$=$\frac{64}{65}$?若存在,求出所有直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx,g(x)=$\frac{1}{2}$x2-kx;
(1)設k=m+$\frac{1}{m}$(m>0),若函數(shù)h(x)=f(x)+g(x)在區(qū)間(0,2)內(nèi)有且僅有一個極值點,求實數(shù)m的取值范圍;
(2)設M(x)=f(x)-g(x),若函數(shù)M(x)存在兩個零點x1,x2(x1>x2),且滿足2x0=x1+x2,問:函數(shù)M(x)在(x0,M(x0))處的切線能否平行于直線y=1,若能,求出該切線方程,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,四邊形ABCD內(nèi)接于⊙O,BA,CD的延長線相交于點E,EF∥DA,并與CB的延長線交于點F,F(xiàn)G切⊙O于G.
(1)求證:BE•EF=CE•BF;
(2)求證:FE=FG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,⊙O的半徑為6,線段AB與⊙O相交于點C、D,OB與⊙O相交于點E,AC=4,CD=3,∠BOD=∠A,則BE=( 。
A.4B.5C.6D.10

查看答案和解析>>

同步練習冊答案