(Ⅰ)用表示;
(Ⅱ)若,記,證明數(shù)列成等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅲ)若,,是數(shù)列的前項(xiàng)和,證明:
本題綜合考察數(shù)列、函數(shù)、不等式、導(dǎo)數(shù)應(yīng)用等知識(shí),以及推理論證、計(jì)算及解決問(wèn)題的能力。
解:(Ⅰ)由題可得
所以過(guò)曲線(xiàn)上點(diǎn)的切線(xiàn)方程為,
即
令,得,即
顯然 ∴
(Ⅱ)由,知,同理,
故
從而,即
所以,數(shù)列成等比數(shù)列,故,
即,從而
所以
(Ⅲ)由(Ⅱ)知
∴
∴
當(dāng)時(shí),顯然
當(dāng)時(shí),,
∴
綜上,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(12分)已知函數(shù),設(shè)曲線(xiàn)在點(diǎn)處的切線(xiàn)與軸的交點(diǎn)為
用表示;
求證:對(duì)一切正整數(shù)都成立的充要條件為;
若,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(14分)已知函數(shù),設(shè)曲線(xiàn)在點(diǎn)處的切線(xiàn)與軸的交點(diǎn)為,其中為正實(shí)數(shù)
(1)用表示;
(2),若,試證明數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年四川卷理)(12分)已知函數(shù),設(shè)曲線(xiàn)在點(diǎn)處的切線(xiàn)與軸的交點(diǎn)為,其中為正實(shí)數(shù).
(Ⅰ)用表示;
(Ⅱ) 證明:對(duì)一切正整數(shù)的充要條件是
(Ⅲ)若,記,證明數(shù)列成等比數(shù)列,并求數(shù)列的通項(xiàng)公式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),設(shè)曲線(xiàn)在點(diǎn)處的切線(xiàn)與軸的交點(diǎn)為,其中為正實(shí)數(shù).
(1)用表示;
(2),若,試證明數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)若數(shù)列的前項(xiàng)和,記數(shù)列的前項(xiàng)和,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),設(shè)曲線(xiàn)在點(diǎn)處的切線(xiàn)與軸的交點(diǎn)為,其中為正實(shí)數(shù).
(1)用表示;
(2),若,試證明數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)若數(shù)列的前項(xiàng)和,記數(shù)列的前項(xiàng)和,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com