18.設函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R).
(1)請你確定a的值,使f(x)為奇函數(shù);
(2)用單調(diào)性定義證明,無論a為何值,f(x)為增函數(shù).

分析 (1)根據(jù)函數(shù)奇偶性的定義進行判斷即可.
(2)根函數(shù)單調(diào)性的定義進行證明即可.

解答 解:(1)∵函數(shù)f(x)是R上的奇函數(shù),
∴f(0)=a-$\frac{2}{1+1}$=0,
∴a=1;
(2)證明:任。簒1<x2∈R,
∴f(x1)-f(x2)=a-$\frac{2}{{2}^{{x}_{1}}+1}$-a+$\frac{2}{{2}^{{x}_{2}}+1}$=2•$\frac{{2}^{{x}_{1}}-{2}^{{x}_{2}}}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$
∵x1<x2,
∴${2}^{{x}_{1}}<{2}^{{x}_{2}}$,
又${2}^{{x}_{1}}+1$>0,${2}^{{x}_{2}}+1>0$,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴f(x)在R上的單調(diào)遞增.

點評 本題主要考查函數(shù)奇偶性和單調(diào)性的判斷和應用,結合函數(shù)奇偶性和單調(diào)性的定義是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知p:函數(shù)f(x)=lg(x2-2x+a)的定義域為R;q:對任意實數(shù)x,不等式4x2+ax+1>0成立,若“p∨q”為真,“p∧q”為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.閱讀下面的程序框圖,運行相應的程序,輸出S的值為105

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.直線l:x+4y=2與圓C:x2+y2=1交于A、B兩點,O為坐標原點,若直線OA、OB的傾斜角分別為α、β,則cosα+cosβ=$\frac{4}{17}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若函數(shù)f(x)=x2+$\frac{a-1}{x}$為偶函數(shù),則實數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,E是邊AC的中點,$\overrightarrow{BC}$=4$\overrightarrow{BD}$,若$\overrightarrow{DE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則x+y=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設α∈(0,$\frac{π}{3}$),滿足$\sqrt{3}$sinα+cosα=$\frac{\sqrt{6}}{2}$.
(1)求cos(α+$\frac{π}{6}$)的值;
(2)求cos(2α+$\frac{7}{12}$π)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知f(x)=ax+$\frac{a}{x}$,g(x)=ex-3ax,a>0,若對?x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)總有解,則實數(shù)a的取值范圍為[$\frac{e}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若集合A={x|x2-x-2<0},且A∪B=A,則集合B可能是(  )
A.{0,1}B.{x|x<2}C.{x|-2<x<1}D.R

查看答案和解析>>

同步練習冊答案