10.設(shè)α∈(0,$\frac{π}{3}$),滿(mǎn)足$\sqrt{3}$sinα+cosα=$\frac{\sqrt{6}}{2}$.
(1)求cos(α+$\frac{π}{6}$)的值;
(2)求cos(2α+$\frac{7}{12}$π)的值.

分析 (1)利用兩角和的正弦公式求得 sin(α+$\frac{π}{6}$)的值,再利用同角三角函數(shù)的基本關(guān)系求得 cos(α+$\frac{π}{6}$) 的值.
(2)利用二倍角公式求得 cos(2α+$\frac{π}{3}$)的值,可得sin(2α+$\frac{π}{3}$)的值,從而求得cos(2α+$\frac{7}{12}$π)=cos[(2α+$\frac{π}{3}$)+$\frac{π}{4}$]的值.

解答 解:(1)∵α∈(0,$\frac{π}{3}$),滿(mǎn)足$\sqrt{3}$sinα+cosα=$\frac{\sqrt{6}}{2}$=2sin(α+$\frac{π}{6}$),∴sin(α+$\frac{π}{6}$)=$\frac{\sqrt{6}}{4}$.
∴cos(α+$\frac{π}{6}$)=$\sqrt{{1-sin}^{2}(α+\frac{π}{6})}$=$\frac{\sqrt{10}}{4}$.
(2)∵cos(2α+$\frac{π}{3}$)=2${cos}^{2}(α+\frac{π}{6})$-1=$\frac{1}{4}$,sin(2α+$\frac{π}{3}$)=2sin(α+$\frac{π}{6}$) cos(α+$\frac{π}{6}$)=2•$\frac{\sqrt{6}}{4}$•$\frac{\sqrt{10}}{4}$=$\frac{\sqrt{15}}{4}$,
∴cos(2α+$\frac{7}{12}$π)=cos[(2α+$\frac{π}{3}$)+$\frac{π}{4}$]=cos(2α+$\frac{π}{3}$)cos$\frac{π}{4}$-sin(2α+$\frac{π}{3}$)sin$\frac{π}{4}$=$\frac{1}{4}•\frac{\sqrt{2}}{2}$-$\frac{\sqrt{15}}{4}•\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}-\sqrt{30}}{8}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、二倍角公式、兩角和差的三角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.點(diǎn)P是拋物線(xiàn)y2=4x上一動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,-1)的距離與拋物線(xiàn)準(zhǔn)線(xiàn)的距離之和最小時(shí),P的坐標(biāo)是(3-2$\sqrt{2}$,2-2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}對(duì)任意的n∈N*滿(mǎn)足:an+2+an>2an+1,則稱(chēng)數(shù)列{an}為“T數(shù)列”.
(Ⅰ)求證:數(shù)列{2n}是“T數(shù)列”;
(Ⅱ)若${a_n}={n^2}•{({\frac{1}{2}})^n}$,試判斷數(shù)列{an}是否是“T數(shù)列”,并說(shuō)明理由;
(Ⅲ)若數(shù)列{an}是各項(xiàng)均為正的“T數(shù)列”,求證:$\frac{{{a_1}+{a_3}+…+{a_{2n+1}}}}{{{a_2}+{a_4}+…+{a_{2n}}}}>\frac{n+1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R).
(1)請(qǐng)你確定a的值,使f(x)為奇函數(shù);
(2)用單調(diào)性定義證明,無(wú)論a為何值,f(x)為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若函數(shù)f(x)=x2-ax+2a-4的一個(gè)零點(diǎn)在區(qū)間(-2,0)內(nèi),另一個(gè)零點(diǎn)在區(qū)間(1,3)內(nèi),則實(shí)數(shù)a的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若直線(xiàn)(a-2)x-y+3=0的傾斜角為45°,則實(shí)數(shù)a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如果正方體、球與等邊圓柱(圓柱底面圓的直徑與高相等)的體積相等,設(shè)它們的表面積依次為S1,S2,S3,則S1,S2,S3大小關(guān)系為S2<S3<S1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=lnx,h(x)=ax(a∈R).
(1)求函數(shù)y=-af(x)-h(x)+x2+2x的單調(diào)區(qū)間:
(2)是否存在實(shí)數(shù)m,使得對(duì)任意的$x∈({\frac{1}{2},+∞})$,都有函數(shù)$y=f(x)+\frac{m}{x}$的圖象在$g(x)=\frac{e^x}{x}$的圖象的下方?若存在,請(qǐng)求出整數(shù)m的最大值;若不存在,請(qǐng)說(shuō)理由:(參考數(shù)據(jù):$ln2=0.6931,\sqrt{e}=1.6487,\root{3}{e}=1.3956$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知點(diǎn)F為拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),點(diǎn)M(2,m)在拋物線(xiàn)E上,且|MF|=3.
(1)求拋物線(xiàn)E的方程;
(2)過(guò)x軸正半軸上一點(diǎn)N(a,0)的直線(xiàn)與拋物線(xiàn)E交于A,B兩點(diǎn),若OA⊥OB,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案