已知命題P:4-2x≥0;命題q;
1
x+1
<0
,若p∧(¬q)為真命題,求x的取值范圍.
解不等式4-2x≥0得x≤2,即命題P為真命題時(shí)x≤2
解不等式
1
x+1
<0
得x<-1,即命題q為真命題時(shí)x<-1
則命題q為假命題時(shí)x≥-1
又∵p∧(¬q)為真命題
∴命題P為真命題且命題q為假命題
∴x≤2且x≥-1
故-1≤x≤2
故p∧(¬q)為真命題時(shí)x的取值范圍為[-1,2]
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列命題: ①若命題p:”x>1” 是真命題,則命題q:”x≥1”是真命題; ②函數(shù)y=2xx>0)的反函數(shù)是y=-logxx>0); ③如果一個(gè)簡(jiǎn)單多面體的所有面都是四邊形,那么F=V-2 (其中F為面數(shù),V為頂點(diǎn)數(shù)); ④“a≠1或b≠5”充分不必要條件是“a+b≠6”,其中所有真命題的序號(hào)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知p:函數(shù)f(x)=logax(a>0且a≠1)在(0,+∞)上單調(diào)遞增;q:關(guān)于x的不等式ax2-ax+1>0的解集為R.若“p且q”為假,“p或q”為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知c>0,p:函數(shù)y=cx是R上的減函數(shù);q:當(dāng)x∈[
1
2
,2]
時(shí),函數(shù)f(x)=x+
1
x
c2-
5
2
c+3
恒成立.若p∧q為假命題且p∨q是真命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知手>0,設(shè)p:函數(shù)y=手w在R上單調(diào)遞減;g:不等式w+|w-2手|>1的解集為R.w果p∨g為真,p∧g為假,求實(shí)數(shù)手的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)p:
m-2
m-3
2
3
,q:關(guān)于x的不等式x2-4x+m2≤0的解集是空集,試確定實(shí)數(shù)m的取值范圍,使得p∨q為真命題,p∧q為假命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知命題p:不等式|x|≥m的解集是R,命題q:f(x)=
2-m
x
在區(qū)間(0,+∞)上是減函數(shù),若命題“p∨q”為真,則實(shí)數(shù)m的范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

己知命題p:方程
x2
m-4
+
y2
m-2
=1
表示焦點(diǎn)在y軸的雙曲線;命題q:關(guān)于x的不等式x2-2x+m>0的解集是R;
若“p∧q”是假命題,“p∨q”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

命題:“若,則”的逆否命題是(   )
A.若,則
B.若,則
C.若,則
D.若,則

查看答案和解析>>

同步練習(xí)冊(cè)答案